[1] |
Chen H, Chen XY, Wang H, et al. Intraocular Lens power calculation after refractive surgery: A Meta-Analysis[J]. Sci Rep, 2020, 10(1): 1-8.
|
[2] |
Omoto MK, Torii H, Haya SK, et al. Ratio of axial length to corneal radius in japanese patients and accuracy of intraocular lens power calculation based on biometric data.[J]. AMJ Ophthalmol, 2020, 21(5): 1-17.
|
[3] |
Sharma A, Batra A. Evaluation of Scheimpflug imaging system as an added tool in improving the accuracy of reference marking (as compared to the slit lamp marking system) for toric intraocular lens implantation[J]. Indian J Ophthalmol, 2020, 68(4): 583-586.
|
[4] |
Shajari M, Sonntag R, Niermann T, et al. Determining and comparing the effective lens position and refractive outcome of a novel rhexis-fixated lens to established lens designs[J]. AMJ Ophthalmol, 2020, 213(5): 62-68.
|
[5] |
Satou T, Shimizu K, Tsunehiro S, et al. Development of a new intraocular lens power calculation method based on lens position estimated with optical coherence tomography[J]. Sci Rep, 2020, 10(1): 1-11.
|
[6] |
刘建勋. 社区老年性白内障流行病学的调查研究[J]. 中国卫生产业,2015,12(14):154-155.
|
[7] |
Takkar B, Gaur N, Saluja GJ, et al. Evaluation of the vitreous chamber depth: An assessment of correlation with ocular biometrics[J]. Indian J Ophthalmol, 2019, 67(10): 1645-1649.
|
[8] |
Shrivastava AK, Behera P, Kumar B, et al. Precision of intraocular lens power prediction in eyes shorter than 22 mm: An analysis of 6 formulas[J] .J Cataract Refract Surg, 2018, 44(11): 1317-1320.
|
[9] |
Akaln Ι, Tüfek M, Türkylmaz M, et al. Comparison of preoperative and postoperative measurements of optical low-coherence reflectometry biometry and assessment of its refractive predictability[J]. Int Ophthalmol, 2019, 39(6): 1337-1343.
|
[10] |
曲鹏,于涛,党光福. 双眼眼轴长度差异对白内障术后屈光误差影响[J]. 社区医学杂志,2019,17(3):136-137,141.
|
[11] |
Kansal V, Schlenker M, Ahmed IIK, et al. Interocular axial length and corneal power differences as predictors of postoperative refractive outcomes after cataract surgery[J]. Ophthalmology, 2018, 125(7): 972-981.
|
[12] |
Rong X, He W, Zhu Q, et al. Intraocular lens power calculation in eyes with extreme myopia: Comparison of Barrett Universal Ⅱ,Haigis, and Olsen formulas[J]. J Cataract Refract Surg, 2019, 45(6): 732-737.
|
[13] |
Karabela Y, Eliacik M, Kocabora MS, et al. Predicting the refractive outcome and accuracy of IOL power calculation after phacoemulsification using the SRK/T formula with ultrasound biometry in medium axial lengths[J]. Clin Ophthalmol, 2017, 11: 1143-1149.
|
[14] |
Yang S, Whang WJ, Joo CK, et al. Effect of anterior chamber depth on the choice of intraocular lens calculation formula[J]. PLoS One, 2017, 12(12): e1-e11.
|
[15] |
Wallace HB, Misra SL, Li SS, et al. Predicting pseudophakic refractive error: Interplay of biometry prediction error, anterior chamber depth, and changes in corneal curvature[J]. J Cataract Refract Surg, 2018, 44(9): 1123-1129.
|
[16] |
Zhu X, He W, Du Y, et al. Effect of fixation stability during biometry measurements on refractive prediction accuracy in highly myopic eyes[J]. J Cataract Refract Surg, 2017, 43(9): 1157-1162.
|
[17] |
Lam JKM, Chan TCY, Ng Alex LK, et al. Outcomes of cataract operations in extreme high axial myopia[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(9): 1811-1817.
|
[18] |
Savini G, Hoffer KJ, Barboni P, et al. Corneal asphericity and IOL power calculation in eyes with aspherical IOLs[J]. J Refract Surg, 2017, 33(7): 476-481.
|
[19] |
张婉琪,程缨淋,黄惠春,等. 高度近视合并白内障患者术后人工晶状体位移对屈光度的影响[J]. 眼科新进展,2019,39(4):376-378.
|
[20] |
Zhong XJ, Long E, Chen W, et al. Comparisons of the in-the-bag stabilities of single-piece and three-piece intraocular lenses for age-related cataract patients: a randomized controlled trial[J]. BMC Ophthalmol, 2016, 16(8): 1-7.
|
[21] |
Zhu XJ, Chen MJ, Zhang KK, et al. Elevated TGF-β2 level in aqueous humor of cataract patients with high myopia: Potential risk factor for capsule contraction syndrome[J]. J Cataract Refract Surg, 2016, 42(2): 232-238.
|
[22] |
赵海亮,张健. 超长眼轴白内障手术前后眼生物测量参数变化及相互关系[J]. 国际眼科杂志,2019,19(1):87-91.
|
[23] |
Avdagic E, Lazzaro DR. Evaluation of the effect of cycloplegia on anterior chamber depth in cataract patients using optical low-coherence reflectometry[J]. Eye Contact Lens, 2018, 10: S59-S61.
|
[24] |
Kim YC, Sung MS, Heo H, et al. Anterior segment configuration as a predictive factor for refractive outcome after cataract surgery in patients with glaucoma[J]. BMC Ophthalmol, 2016, 16(1): 1-9.
|
[25] |
Muniz CH, Tai AX, Sampson SJ, et al. Accuracy of intraocular lens power calculation using anterior chamber depth from two devices with Barrett Universal ⅡFormula[J]. J Ophthalmol, 2019:1-5.
|
[26] |
Gökce SE, Montes DOIl, Cooke DL, et al. Accuracy of 8 intraocular lens calculation formulas in relation to anterior chamber depth in patients with normal axial lengths[J]. J Cataract Refract Surg, 2018, 44(3): 362-368.
|
[27] |
Ning X, Yang Y, Yan H, et al. Anterior chamber depth-a predictor of refractive outcomes after age-related cataract surgery[J]. BMC Ophthalmol, 2019, 19(1): 134-143.
|
[28] |
Bilak S, Simsek A, Capkin M, et al. Biometric and intraocular pressure change after cataract surgery[J]. Optom Vis Sci, 2015, 92(4): 464-470.
|
[29] |
杨斐,侯宪如,吴慧娟,等. 年龄相关性白内障合并浅前房患者白内障术后屈光状态研究[J]. 中华眼科杂志,2014,50(2):84-88.
|
[30] |
董喆,郝洁,万月,等. 浅前房对白内障超声乳化联合人工晶状体植入术后屈光状态的影响[J]. 眼科,2017,26(6):397-399.
|
[31] |
刘佳. 影响年龄相关性白内障术后屈光误差的术前眼球生物学参数特征分析[J]. 中华眼视光学与视觉科学杂志,2015,17(8):481-483.
|
[32] |
Zhang Z, Miao Y, Fang X, et al. Accuracy of the Haigis and SRK/T formulas in eyes longer than 29.0 mm and the influence of central corneal keratometry reading [J]. Current Eye Research, 2018, 43(11): 1316-1321.
|
[33] |
Savini G, Hoffer KJ. Intraocular lens power calculation in eyes with previous corneal refractive surgery[J]. Eye Vis (Lond), 2018, 18(5): 1-10.
|
[34] |
von Winkler MC, Gabler B, Lohmann CP, et al. Optical biometry before and after excimer laser epithelial keratomileusis (LASEK) for myopia[J]. Eur J Ophthalmol, 2003, 13(3): 257-259.
|
[35] |
夏春静,王晓龙. 上海某镇老年人白内障术后屈光状态及影响术后配镜因素分析[J]. 上海医药,2019,40(6):63-66.
|
[36] |
Yu M, Chen M, Dai J. Comparison of the posterior corneal elevation and biomechanics after SMILE and LASEK for myopia: a short- and long-term observation[J]. Graefes Arch Clin Exp Ophthalmol, 2019, 257(3): 601-606.
|
[37] |
Kang BS, Han JM, Oh JY, et al. Intraocular lens power calculation after refractive surgery: a comparative analysis of accuracy and predictability[J]. Korean J Ophthalmol, 2017, 31(6): 479-488.
|
[38] |
李鸿钰,李军,宋慧. LASIK/PRK术后人工晶状体度数计算的研究进展[J].国际眼科杂志,2019,19(10):1704-1708.
|
[39] |
Abulafia A, Hill WE, Wang L, et al. Intraocular lens power calculation in eyes after laser in situ keratomileusis or photorefractive keratectomy for myopia[J]. Asia Pac J Ophthalmol (Phila), 2017, 6(4): 332-338.
|
[40] |
Zhu W, Zhang FJ, Li Y, et al. Stability of the Barrett True-K formula for intraocular lens power calculation after SMILE in Chinese myopic eyes[J]. Int J Ophthalmol, 2020, 13(4): 560-566.
|
[41] |
Rosen DB, Heiland MB, Tingey M, et al. Intraocular lens calculation after refractive surgery: a long-term retrospective comparison of eight formulas[J]. Med Hypothesis Discov Innov Ophthalmol, 2019, 8(3): 121-128.
|
[42] |
Lawless M, Jiang JY, Hodge C, et al. Total keratometry in intraocular lens power calculations in eyes with previous laser refractive surgery[J/OL]. (2020-03-20).
URL
|
[43] |
Cho K, Lim DH, Yang CM, et al. Comparison of intraocular lens power calculation methods following myopic laser refractive surgery: new options using a rotating scheimpflug camera[J]. Korean J Ophthalmol, 2018, 32(6): 497-505.
|
[44] |
Abulafia A, Hill WE, Koch DD, et al. Accuracy of the Barrett True-K formula for intraocular lens power prediction after laser in situ keratomileusis or photorefractive keratectomy for myopia[J]. J Cataract Refract Surg, 2016, 42(3): 363-369.
|
[45] |
Hayashi K, Ogawa S, Yoshida M, et al. Influence of patient age on intraocular lens power prediction error[J]. Am J Ophthalmol, 2016, 170(10): 232-237.
|
[46] |
李俊逸,许韫,范彦岩,等. 患者年龄与人工晶状体屈光度预测误差的关系[J]. 中华眼外伤职业眼病杂志,2018,40(4):273-276.
|
[47] |
Aristodemou P, Knox CNE, Sparrow JM, et al. First eye prediction error improves second eye refractive outcome results in 2129 patients after bilateral sequential cataract surgery[J]. Ophthalmology, 2011, 118(9): 1701-1709.
|
[48] |
Jabbour J, Irwig L, Macaskill P, et al. Intraocular lens power in bilateral cataract surgery: whether adjusting for error of predicted refraction in the first eye improves prediction in the second eye[J]. J Cataract Refract Surg, 2006, 32(12): 2091-2097.
|
[49] |
Olsen T. Use of fellow eye data in the calculation of intraocular lens power for the second eye[J]. Ophthalmology, 2011, 118(9): 1710-1715.
|
[50] |
Covert DJ, Henry CR, Koenig SB. Intraocular lens power selection in the second eye of patients undergoing bilateral, sequential cataract extraction[J]. Ophthalmology, 2010, 117(1): 49-54.
|
[51] |
Turnbull AMJ, Barrett GD. Using the first-eye prediction error in cataract surgery to refine the refractive outcome of the second eye[J]. J Cataract Refract Surg, 2019, 45(9): 1239-1245.
|
[52] |
Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas[J]. J Cataract Refract Surg, 1993, 19(6): 700-712.
|
[53] |
Darcy K, Gunn D, Tavassoli S, et al. Assessment of the accuracy of new and updated intraocular lens power calculation formulas in 10 930 eyes from the UK National Health Service[J]. J Cataract Refract Surg, 2020, 46(1): 2-7.
|
[54] |
Carmona GD, Palomino BC. Accuracy of a new intraocular lens power calculation method based on artificial intelligence[J]. Eye (Lond), 2020, 28(4): 1-6.
|
[55] |
Connell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection[J]. BMJ Open Ophthalmol, 2019, 4(1): e251-e257.
|
[56] |
Ladas JG, Siddiqui AA, Devgan U, et al. A 3-D "Super surface" combining modern intraocular lens formulas to generate a "super formula" and maximize accuracy[J]. JAMA Ophthalmol, 2015, 133(12): 1431-1436.
|
[57] |
Siddiqui AA, Ladas JG, Lee JK, et al. Artificial intelligence in cornea, refractive, and cataract surgery[J]. Curr Opin Ophthalmol, 2020, 31(4): 253-260.
|
[58] |
Zhou D, Sun Z, Deng G, et al. Accuracy of the refractive prediction determined by intraocular lens power calculation formulas in high myopia[J]. Indian J Ophthalmol, 2019, 67(4): 484-489.
|
[59] |
Goto S, Maeda N, Noda T, et al. Comparison of composite and segmental methods for acquiring optical axial length with swept-source optical coherence tomography[J]. Sci Rep, 2020, 10(1): 4474-4782.
|
[60] |
邴丽英,刘桂波,马玉娜,等. 人工晶体计算公式在正常眼轴合并浅前房白内障患者中的准确性比较[J]. 临床医学进展,2018,8(2):210-216.
|
[61] |
Aristodemou P, Knox CNE, Sparrow JM, et al. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry[J]. J Cataract Refract Surg, 2011, 37(1): 63-71.
|
[62] |
Voytsekhivskyy OV. Development and clinical accuracy of a new intraocular lens power formula (VRF) compared to other formulas[J]. Am J Ophthalmol, 2018, 185(2): 56-67.
|
[63] |
Melles RB, Holladay JT, Chang WJ, et al. Accuracy of intraocular lens calculation formulas[J]. Ophthalmology, 2018, 125(2): 169-178.
|
[64] |
Kane JX, Van HA, Atik A, et al. Accuracy of 3 new methods for intraocular lens power selection[J]. J Cataract Refract Surg, 2017, 43(3): 333-339.
|
[65] |
Aristodemou P, Knox CNE, Sparrow JM, et al. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry[J]. J Cataract Refract Surg, 2011, 37(1): 63-71.
|
[66] |
Voytsekhivskyy OV. Development and clinical accuracy of a new intraocular Lens Power Formula (VRF) compared to other formulas[J]. Am J Ophthalmol, 2018, 185(2): 56-67.
|
[67] |
Melles RB, Kane JX, Olsen T, et al. Update on Intraocular Lens Calculation Formulas[J]. Ophthalmology, 2019, 126(9): 1334-1335.
|
[68] |
Kane JX, Van HA, Atik A, et al. Accuracy of 3 new methods for intraocular lens power selection[J]. J Cataract Refract Surg, 2017, 43(3): 333-339.
|
[69] |
Reitblat O, Levy A, Kleinmann G, et al. Intraocular lens power calculation for eyes with high and low average keratometry readings: Comparison between various formulas[J]. J Cataract Refract Surg, 2017, 43(9): 1149-1156.
|
[70] |
Zhang J, Tan X, Wang W, et al. Effect of axial length adjustment methods on intraocular lens power calculation in highly myopic eyes[J]. Am J Ophthalmol, 2020, 214(6): 110-118.
|
[71] |
Ji J, Liu Y, Zhang J, et al. Comparison of six methods for the intraocular lens power calculation in high myopic eyes[J]. Eur J Ophthalmol, 2019, 19(11): 1-7.
|
[72] |
Wan KH, Lam TCH, Yu MCY, et al. Accuracy and precision of intraocular lens calculations using the new Hill-RBF version 2.0 in eyes with high axial myopia[J]. Am J Ophthalmol, 2019, 205(9): 66-73.
|
[73] |
Wang L, Tang M, Huang D, et al. Comparison of newer intraocular lens power calculation methods for eyes after corneal refractive surgery[J]. Ophthalmology, 2015, 122(12): 2443-2449.
|
[74] |
Turnbull AMJ, Crawford GJ, Barrett GD. Methods for intraocular lens power calculation in cataract surgery after radial keratotomy[J]. Ophthalmology, 2020, 127(1): 45-51.
|
[75] |
Kodavoor SK, Kulkarni SR, Dandapani R, et al. Analysis of IOL power calculations and postoperative visual outcomes in patients who have undergone radial keratotomy and laser-assisted in situ keratomileusis[J]. JCRS Online Case Reports, 2020, 8(3): e23-e27.
|
[76] |
Vrijman V, Abulafia A, van der Linden JW, et al. ASCRS calculator formula accuracy in multifocal intraocular lens implantation in hyperopic corneal refractive laser surgery eyes[J]. J Cataract Refract Surg, 2019, 45(5): 582-586.
|
[77] |
Saiki M, Negishi K, Kato N, et al. Ray tracing software for intraocular lens power calculation after corneal excimer laser surgery[J]. Jpn J Ophthalmol, 2014, 58(3): 276-281.
|
[79] |
Luft N, Siedlecki J, Schworm B, et al. Intraocular lens power calculation after small incision lenticule extraction[J]. Sci Rep, 2020, 10(1): 5982-5988.
|
[78] |
Gökce SE, Zeiter JH, Weikert MP, et al. Intraocular lens power calculations in short eyes using 7 formulas[J]. J Cataract Refract Surg, 2017, 43(7): 892-897.
|
[80] |
Shajari M, Kolb CM, Petermann K, et al. Comparison of 9 modern intraocular lens power calculation formulas for a quadrifocal intraocular lens[J]. J Cataract Refract Surg, 2018, 44(8): 942-948.
|
[81] |
Alfonso JF, Fernández-Vega-Cueto A, Alfonso-Bartolozzi B, et al. Visual and refractive outcomes in hyperopic pseudophakic patients implanted with a trifocal intraocular lens[J]. Clin Ophthalmol, 2019, 13(12): 2261-2268.
|
[82] |
Kane JX, Connell B. A comparison of the accuracy of six modern toric IOL formulas[J]. Ophthalmology, 2020, 39(4): 1-46.
|
[83] |
Raufi N, James C, Kuo A, et al. Intraoperative aberrometry vs modern preoperative formulas in predicting intraocular lens power[J]. J Cataract Refract Surg, 2020, 46(6): 857-861.
|
[84] |
Siddiqui AA, Devgan U. Intraocular lens calculations in atypical eyes[J]. Indian J Ophthalmol, 2017, 65(12): 1289-1293.
|
[85] |
Cheng H, Liu L, Sun A, et al. Accuracy of modified axial length adjustment for intraocular lens power calculation in Chinese axial myopic eyes[J]. Curr Eye Res, 2019, 28(12): 1-7.
|