切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2018, Vol. 08 ›› Issue (02) : 87 -91. doi: 10.3877/cma.j.issn.2095-2007.2018.02.007

所属专题: 文献

综述

白内障超声乳化吸除联合人工晶状体植入术后脉络膜厚度变化的研究进展
胡圣佳1, 王惠云1, 陆勤康1,(), 赖晓明1   
  1. 1. 315211 宁波大学医学院附属鄞州医院眼科中心
  • 收稿日期:2018-02-27 出版日期:2018-04-28
  • 通信作者: 陆勤康
  • 基金资助:
    浙江省医药卫生科技项目(2018KY162)

Progress in the study of choroidal thickness changes after phacoemulsification and intraocular lens implantation

Shengjia Hu1, Huiyun Wang1, Qinkang Lu1,(), Xiaoming Lai1   

  1. 1. Department of Ophthalmology, Yinzhou Hospital Affiliated to Ningbo University medical school, Ningbo 315211, China
  • Received:2018-02-27 Published:2018-04-28
  • Corresponding author: Qinkang Lu
  • About author:
    Corresponding author: Lu Qinkang, Email: Email:
引用本文:

胡圣佳, 王惠云, 陆勤康, 赖晓明. 白内障超声乳化吸除联合人工晶状体植入术后脉络膜厚度变化的研究进展[J]. 中华眼科医学杂志(电子版), 2018, 08(02): 87-91.

Shengjia Hu, Huiyun Wang, Qinkang Lu, Xiaoming Lai. Progress in the study of choroidal thickness changes after phacoemulsification and intraocular lens implantation[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2018, 08(02): 87-91.

白内障超声乳化吸除联合人工晶状体植入术是目前治疗白内障的首选术式。近年来,随着白内障超声乳化吸除联合人工晶状体植入术的不断完善和成熟,手术后并发症的发生率逐渐降低。但是,部分患者术后视力恢复仍达不到理想的效果。国内外学者普遍认为,这可能与白内障超声乳化吸除联合人工晶状体植入术后视网膜厚度的异常改变有关。脉络膜作为一个高度血管化的组织,为外层视网膜提供氧气及营养物质等,尤其是提供黄斑区的营养和血供。脉络膜厚度变薄或者萎缩,将会严重影响光感受器的功能,甚至导致光感受器细胞死亡。近年来,随着增强深度光学相干断层扫描技术的出现和应用,观察脉络膜各层的细微结构及脉络膜厚度的定点测量在临床上成为可能。相关研究结果表明,白内障术后脉络膜厚度发生不同程度的改变,可能与炎症反应、基因表达、眼内光线的增加及机械牵拉等因素相关。本文就白内障超声乳化吸除联合人工晶状体植入术后脉络膜厚度变化及其影响因素进行综述。

Cataract phacoemulsification combined with intraocular lens implantation is the first choice for the treatment of cataract. In Jin years, with the continuous improvement and maturity of cataract phacoemulsification combined with intraocular lens transplantation, the incidence of postoperative complications has gradually decreased. However, the recovery of visual acuity in some patients is still not satisfactory. Domestic and foreign scholars have suggested that this may be associated with abnormal changes in retinal thickness after cataract phacoemulsification combined with intraocular lens implantation. The choroid as a highly vascularized tissue provides oxygen and nutrients to the outer retina, especially the nutrition and blood supply of macular region. The thickness of the choroid is thinner or atrophy, which will seriously affect the function of the photoreceptor and even lead to the death of the photoreceptor cells. In recent years, with the emergence and application of enhanced optical coherence tomography technology, it is possible to observe the fine structure of choroid layer and the fixed-point measurement of choroidal thickness. Related studies have shown that changes in choroidal thickness after cataract surgery may be related to inflammatory reaction, gene expression, increase of intraocular light and mechanical traction. In this paper, the changes of choroidal thickness and the influencing factors of cataract phacoemulsification combined with intraocular lens implantation were reviewed.

[1]
Uy HS, Edwards K, Curtis N. Femtosecond phacoemulsification: the business and the medicine[J]. Current Opinion in Ophthalmology, 2012, 23(1):33-39.
[2]
姚克,叶盼盼. 我国近五年白内障研究进展和展望[J]. 中华眼科杂志,2010,46(10):888-892.
[3]
Kelman CD. Phaco-emulsification and aspiration. A new technique of cataract removal. A preliminary report[J]. Am J Ophthalmol, 1967, 64(1):23-35.
[4]
Leaming DV. Practice styles and preferences of ASCRS members-2003 survey [J]. J Cataract Refract Surg, 2004, 30(4):892-900.
[5]
余涵,刘海凤. 白内障摘出及人工晶状体术后黄斑改变的临床观察[J]. 中华实验眼科杂志,2005,23(3):303.
[6]
Anastasilakis K, Mourgela A, Symeonidis C, et al. Macular edema after uncomplicated cataract surgery: a role for phacoemulsification energy and vitreoretinal interface status?[J]. Eur J Ophthalmol, 2015, 25(3):192-197.
[7]
Ghosh S, Roy I, Biswas PN, et al. Prospective randomized comparative study of macular thickness following phacoemulsification and manual small incision cataract surgery[J]. Acta Ophthalmologica, 2010, 88(4):102-106.
[8]
谢娟,王瑞姝,张素华,等. 老年性白内障术后黄斑病变的光相干断层扫描观察[J]. 国际眼科杂志,2005,5(2):268-269.
[9]
黎晓新.眼的解剖与生理[J].2版.北京:人民卫生出版社,2010:60-61.
[10]
郑宓,李青. 老年性核性白内障患者21例白内障超声乳化术后中心凹下脉络膜厚度改变分析[J]. 福建医药杂志,2017,39(2):36-40.
[11]
王儒杰,范钦华,郭斌,等. 白内障超声乳化术后黄斑中心凹下脉络膜厚度的改变[J]. 临床眼科杂志,2016,24(2):109-112.
[12]
Kim JT, Lee DH, Joe SG, et al. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients[J]. Invest Ophthalmol Vis Sci, 2013, 54(5):3378-3384.
[13]
Kuroda S, Ikuno Y, Yasuno Y, et al. Choroidal thickness in central serous chorioretinopathy[J]. Retina, 2013, 33(2):302-308.
[14]
Chung SE, Kang SW, Lee JH, et al. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration[J]. Ophthalmology, 2011, 118(5):840-845.
[15]
Fujiwara T, Imamura Y, Margolis R, et al. Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Highly Myopic Eyes[J]. Retina, 2009, 148(3):445-450.
[16]
辛晨,汪军,刘广峰,等. 增强成像技术光学相干断层扫描在在体脉络膜结构研究中的应用[J]. 眼科新进展,2013,33(6):592-596.
[17]
Wang W, Zhang X. Long-term Increase in Subfoveal Choroidal Thickness After Surgery for Senile Cataracts[J]. Am J Ophthalmol, 2014, 158(6):406-407.
[18]
Ohsugi H, Ikuno Y, Ohara Z, et al. Changes in choroidal thickness after cataract surgery[J]. J Cataract Refract Surg, 2014, 40(2):184-191.
[19]
Pierru A, Carles M, Gastaud P, et al. Measurement of subfoveal choroidal thickness after cataract surgery in enhanced depth imaging optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2014, 55(8):4967-4974.
[20]
Bayhan SA, Bayhan HA, Muhafiz E, et al. Evaluation of choroidal thickness changes after phacoemulsification surgery[J]. Clinical Ophthalmology, 2016, 10(1):961-967.
[21]
Falcão MS, Gonçalves NM, Freitascosta P, et al. Choroidal and macular thickness changes induced by cataract surgery[J]. Clinical Ophthalmology, 2014, 8(default):55-60.
[22]
Brito PN, Rosas VM, Coentrão LM, et al. Evaluation of visual acuity, macular status, and subfoveal choroidal thickness changes after cataract surgery in eyes with diabetic retinopathy[J]. Retina, 2015, 35(2):294-302.
[23]
郝军生,王心凤,李兴珍,等. 频域光学相干断层扫描图像增强技术检测轻中度近视青少年散瞳前后黄斑中心凹下脉络膜厚度的变化[J]. 中华眼视光学与视觉科学杂志,2013,15(10):624-627.
[24]
Wei WB, Xu L, Jonas JB, et al. Subfoveal Choroidal Thickness: The Beijing Eye Study[J]. Ophthalmology, 2013, 120(1):175-180.
[25]
Ching HY, Wong AC, Wong CC, et al. Cystoid macular oedema and changes in retinal thickness after phacoemulsification with optical coherence tomography[J]. Eye, 2006, 20(3):297-303.
[26]
Marjanoviĉ I, Martinez A, Marjanoviĉ M, et al. Changes in the Retrobulbar Hemodynamic Parameters after Decreasing the Elevated lntraocular Pressure in Primary Open-angle Glaucoma Patients[J]. Srpski Arhiv Za Celokupno Lekarstvo, 2014, 142(6):286-290.
[27]
Bonomi L, Marchini G, Marraffa M, et al. Epidemiology of angle-closure glaucoma: Prevalence, clinical types, and association with peripheral anterior chamber depth in the Egna-Neumarkt glaucoma study[J]. Ophthalmology, 2000, 107(5):998-1003.
[28]
Gherghel D, Orgül S, Gugleta K, et al. Relationship between ocular perfusion pressure and retrobulbar blood flow in patients with glaucoma with progressive damage[J]. Am J Ophthalmol, 2000, 130(5):597-605.
[29]
Harris A, Chung HS, Ciulla TA, et al. Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration[J]. Progress in Retinal & Eye Research, 1999, 18(5):669-687.
[30]
Repo LP, Suhonen MT, Teräsvirta ME, et al. Color Doppler imaging of the ophthalmic artery blood flow spectra of patients who have had a transient ischemic attack. Correlations with generalized iris transluminance and pseudoexfoliation syndrome[J]. Ophthalmology, 1995, 102(8):1199-1205.
[31]
Repo LP, Teräsvirta ME, Koivisto KJ. Generalized transluminance of the iris and the frequency of the pseudoexfoliation syndrome in the eyes of transient ischemic attack patients[J]. Ophthalmology, 1993, 100(3):352-355.
[32]
Ringvold A. On the occurrence of pseudo-exfoliation material in extrabulbar tissue from patients with pseudo-exfoliation syndrome of the eye[J]. Acta Ophthalmologica, 1973, 51(3):411-418.
[33]
Akahori T, Iwase T, Yamamoto K, et al. Changes in Choroidal Blood Flow and Morphology in Response to Increase in Intraocular Pressure[J]. Invest Ophthalmol Vis Sci, 2017, 58(12):5076-5085.
[34]
Kim M, Kim SS, Kwon HJ, et al. Association between choroidal thickness and ocular perfusion pressure in young, healthy subjects: enhanced depth imaging optical coherence tomography study[J]. Invest Ophthalmol Vis Sci, 2012, 53(12):7710-7717.
[35]
Kim M, Kim H, Kwon HJ, et al. Choroidal thickness in Behcet's uveitis: an enhanced depth imaging-optical coherence tomography and its association with angiographic changes[J]. Invest Ophthalmol Vis Sci, 2013, 54(9):6033-6039.
[36]
Miyamoto K, Ogura Y, Nishiwaki H, et al. Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat. A spontaneous model of non-insulin-dependent diabetes[J]. Invest Ophthalmol Vis Sci, 1996, 37(5):898-905.
[37]
Matsuo T, Sato Y, Shiraga F, et al. Choroidal abnormalities in Beh?et disease observed by simultaneous indocyanine green and fluorescein angiography with scanning laser ophthalmoscopy[J]. Ophthalmology, 1999, 106(2):295-300.
[38]
Scheider A, Nasemann JE, Lund OE. Fluorescein and indocyanine green angiographies of central serous choroidopathy by scanning laser ophthalmoscopy[J]. Am J Ophthalmol, 1993, 115(1):50-56.
[39]
Berisha F, Feke GT, Aliyeva S, et al. Evaluation of macular abnormalities in Stargardt's disease using optical coherence tomography and scanning laser ophthalmoscope microperimetry[J]. Graefes Archive for Clinical & Experimental Ophthalmology, 2009, 247(3):303-309.
[40]
Devaraj S, Cheung AT, Jialal I, et al. Evidence of Increased Inflammation and Microcirculatory Abnormalities in Patients With Type 1 Diabetes and Their Role in Microvascular Complications[J]. Diabetes, 2007, 56(11):2790-2796.
[41]
Parry DM, Maccollin MM, Kaiserkupfer MI, et al. Germ-line mutations in the neurofibromatosis 2 gene: correlations with disease severity and retinal abnormalities[J]. American Journal of Human Genetics, 1996, 59(3):529-539.
[42]
Medeiros FA, Ng D, Zangwill LM, et al. The effects of study design and spectrum bias on the evaluation of diagnostic accuracy of confocal scanning laser ophthalmoscopy in glaucoma[J]. Invest Ophthalmol Vis Sci, 2007, 48(1):214-222.
[43]
Ng D, Zangwill LM, Racette L, et al. Agreement and repeatability for standard automated perimetry and confocal scanning laser ophthalmoscopy in the diagnostic innovations in glaucoma study[J]. Am J Ophthalmol, 2006, 142(3):381-386.
[44]
Buteikienë D, Paunksnis A, Barzdiukas V, et al. Correlations between digital planimetry and optical coherence tomography, confocal scanning laser ophthalmoscopy in assessment of optic disc parameters[J]. Medicina, 2012, 48(3):150-158.
[45]
Zangwill LM, Weinreb RN, Beiser JA, et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study[J]. Archives of Ophthalmology, 2005, 123(9):1188-1197.
[46]
Mwanza JC, Warren JL, Budenz DL. Combining spectral domain optical coherence tomography structural parameters for the diagnosis of glaucoma with early visual field loss[J]. Invest Ophthalmol Vis Sci, 2013, 54(13):8393-8400.
[47]
Zhou M, Wang W, Ding X, et al. Choroidal thickness in fellow eyes of patients with acute primary angle-closure measured by enhanced depth imaging spectral-domain optical coherence tomography[J]. Invest Ophthalmol Vis Sci, 2013, 54(3):1971-1978.
[48]
Gulkilik G, Kocabora S, Taskapili M, et al. Cystoid macular edema after phacoemulsification: risk factors and effect on visual acuity[J]. Canadian Journal of Ophthalmology, 2006, 41(6):699-703.
[49]
Miyake K, Ibaraki N. Prostaglandins and Cystoid Macular Edema[J]. Survey of Ophthalmology, 2002, 47(4):203-218.
[50]
Liu H, Demetriades AM, Xiao WH, et al. Mouse model of post-surgical breakdown of the blood-retinal barrier[J]. Current Eye Research, 2004, 28(6):421-426.
[51]
谢茂松,郑永征,徐国兴. 眼前节内眼模拟手术诱发血眼屏障破坏的大鼠动物模型[J]. 中华眼底病杂志,2012,28(1):68-72.
[52]
Asena BS, Karahan E, Kaskaloglu M. Retinal and choroidal thickness after femtosecond laser-assisted and standard phacoemulsification[J]. Clinical Ophthalmology, 2017, 11(2):1541-1547.
[53]
Xu H, Chen M, Forrester JV, et al. Cataract surgery induces retinal pro-inflammatory gene expression and protein secretion.[J]. Invest Ophthalmol Vis Sci, 2011, 52(1):249-255.
[54]
Arany Z, Foo SY, Ma Y, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha[J]. Nature, 2008, 451(7181):1008-1012.
[55]
Ueta T, Inoue T, Yuda K, et al. Intense physiological light upregulates vascular endothelial growth factor and enhances choroidal neovascularization via peroxisome proliferator-activated receptor γ coactivator-1α in mice[J]. Arteriosclerosis Thrombosis & Vascular Biology, 2012, 32(6):1366-1371.
[56]
Recchia FM, Ruby AJ, Carvalho CA. Pars plana vitrectomy with removal of the internal limiting membrane in the treatment of persistent diabetic macular edema[J]. Am J Ophthalmol, 2005, 139(3):447-454.
[57]
Rho DS. Treatment of acute pseudophakic cystoid macular edema: Diclofenac versus ketorolac[J]. Jf Cataract Refract Surg, 2003, 29(12):2378-2384.
[58]
Flach AJ, Jampol LM, Weinberg D, et al. Improvement in visual acuity in chronic aphakic and pseudophakic cystoid macular edema after treatment with topical 0.5% ketorolac tromethamine[J]. Am J Ophthalmol, 1991, 112(5):514-519.
[59]
刘冬梅,刘正峰,毕宏生,等. 飞秒激光辅助的白内障手术研究进展[J]. 眼科新进展,2015,35(3):290-292.
[60]
Flach AJ, Lavelle CJ, Olander KW, et al. The effect of ketorolac tromethamine solution 0.5% in reducing postoperative inflammation after cataract extraction and intraocular lens implantation[J]. Ophthalmology, 1988, 95(9):1279-1284.
[61]
Warwar RE, Bullock JD, Ballal D. Cystoid macular edema and anterior uveitis associated with latanoprost use. Experience and incidence in a retrospective review of 94 patients[J]. Ophthalmology, 1998, 105(2):263-268.
[62]
Moroi SE, Gottfredsdottir MS, Schteingart MT, et al. Cystoid macular edema associated with latanoprost therapy in a case series of patients with glaucoma and ocular hypertension 1[J]. Ophthalmology, 1999, 106(5):1024-1029.
[63]
Camras CB. Comparison of latanoprost and timolol in patients with ocular hypertension and glaucoma: a six-month masked, multicenter trial in the United States. The United States Latanoprost Study Group[J]. Ophthalmology, 1996, 103(1):138-147.
[1] 鲁丹, 毛菲菲, 李丹, 王胜男, 刘夕瑶, 孙挥宇. 获得性免疫缺陷综合征合并新型隐球菌性脑膜炎患者视乳头水肿急性期的频域光学相干断层扫描特征[J]. 中华实验和临床感染病杂志(电子版), 2021, 15(04): 270-275.
[2] 林明玥, 周祁, 刘歆, 曲申, 陈开传, 吕筱, 韩雯婷, 毕燕龙. 术中光学相干断层扫描辅助玻璃体Berger腔切除术的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 199-204.
[3] 蔡紫妍, 段宣初, 杨翔. 深度学习算法在青光眼筛查与诊断中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 188-192.
[4] 王姮, 张瑞恒, 刘月明, 魏文斌. 巩膜外敷贴放射后补充经瞳孔温热疗法治疗脉络膜黑色素瘤的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 18-23.
[5] 白静怡, 黄轩, 张益权, 田颖, 陶勇. 小鼠干眼模型构建及其角膜特征检测的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 12-17.
[6] 周海英, 纪海霞, 佘海澄, 彭晓燕. 视盘黑色素细胞瘤多模态影像学特征的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 198-203.
[7] 黄瑶, 侯思梦, 魏文斌. 继发黄斑水肿的视网膜中央静脉阻塞患眼脉络膜厚度的变化及雷珠单抗治疗效果的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 134-139.
[8] 胡晨曦, 唐楚皓, 韩亮, 段虹宇, 杨婷婷, 刘一昀, 马佰凯, 赵琳, 齐虹. 光学相干断层扫描血管成像对视网膜血管形态学评估的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 47-51.
[9] 段如月, 张天资, 晓琴, 韩永青, 佟玉兰. 光学相干断层扫描血管成像技术在康柏西普对湿性年龄相关性黄斑变性治疗效果评价中的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 140-145.
[10] 张敬学, 闫雪静, 刘谦, 武珅. 酪氨酸激酶抑制剂E7080治疗大鼠脉络膜新生血管的实验研究[J]. 中华眼科医学杂志(电子版), 2020, 10(04): 219-225.
[11] 杨宇, 姜惠, 范玮. 高度近视眼眼底血流动力学的研究进展[J]. 中华眼科医学杂志(电子版), 2020, 10(03): 183-187.
[12] 牛红蕾, 张东昌, 杨璐. 多模式眼底影像技术在高度近视眼检查中的应用进展[J]. 中华眼科医学杂志(电子版), 2020, 10(02): 123-128.
[13] 叶婷, 李丹杰, 郭雷, 范玮. 健康学龄儿童视网膜血管发育的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(02): 97-102.
[14] 王惠云, 张骏, 陆勤康, 邓国华. 运用深度增强成像光学相干断层扫描技术监测女性妊娠晚期脉络膜厚度的变化[J]. 中华眼科医学杂志(电子版), 2020, 10(01): 27-32.
[15] 周倩茹, 任家利, 王元伟, 胡婷, 王光胜. MR扩散加权成像脑梗死灶形态特征诊断脉络膜前动脉梗死的价值[J]. 中华临床医师杂志(电子版), 2019, 13(09): 669-674.
阅读次数
全文


摘要