切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (05) : 316 -320. doi: 10.3877/cma.j.issn.2095-2007.2023.05.012

综述

前房角检查的临床应用进展
刘谨硕, 朱思泉()   
  1. 100011 首都医科大学附属北京安贞医院眼科2022级硕士研究生
    100011 首都医科大学附属北京安贞医院眼科
  • 收稿日期:2023-09-04 出版日期:2023-10-28
  • 通信作者: 朱思泉
  • 基金资助:
    国家自然科学基金项目(52073181)

Advances on the clinical implementation of anterior chamber angle examination

Jinshuo Liu, Siquan Zhu()   

  1. Master′s degree 2022 candidate in Ophthalmology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100011, China
    Department of Ophthalmology, Anzhen Hospital, Captial Medical University, Beijing 100011, China
  • Received:2023-09-04 Published:2023-10-28
  • Corresponding author: Siquan Zhu
引用本文:

刘谨硕, 朱思泉. 前房角检查的临床应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 316-320.

Jinshuo Liu, Siquan Zhu. Advances on the clinical implementation of anterior chamber angle examination[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(05): 316-320.

前房角由虹膜根部、巩膜、角膜内皮和晶状体的边缘组成。这个区域决定了房水的流动,是维持眼内压平衡的关键部位。若前房角关闭,房水排出不畅,便会眼压升高进而视神经受损。前房角关闭涉及虹膜-小梁网接触、睫状体和晶状体改变等。前房角镜是评估前房角状态的标准检查方式,有许多因素会影响前房角镜观察的结果。近年来,多种眼科成像系统依靠其数据客观、可重复性强、能获得清晰图像及其数据可量化的特点已经成为临床上常用的检查手段。本文中笔者就前房角检查的临床应用进展进行综述。

The anterior chamber angle is composed of the iris root, sclera, corneal endothelium, and the edge of the lens. This area determines the flow of aqueous humor and is a key area for maintaining intraocular pressure balance. Once the anterior chamber angle is narrow and or closed, the aqueous humor will not discharged smoothly, which causing to increase intraocular pressure and damage to the optic nerve. The closure of the anterior chamber angle involves changes in the iris, trabecular meshwork, ciliary body, and lens changes. Anterior chamber angle mirror is a standard examination method for evaluating the condition of anterior chamber angle, which has been affect by many factors. In recent years, various ophthalmic imaging systems have become commonly used examination methods in clinical practice due to their objective data, strong repeatability, ability to obtain clear images, and quantifiable data. In this paper, the clinical application progress of anterior chamber angle examination was reviewed.

[1]
Congdon NG, Spaeth GL, Augsburger J, et al. A proposed simple method for measurement in the anterior chamber angle: biometric gonioscopy[J]. Ophthalmology, 1999, 106(11): 2161-2167.
[2]
Porporato N, Baskaran M, Husain R, et al. Recent advances in anterior chamber angle imaging[J]. Eye (Lond), 2020, 34(1): 51-59.
[3]
Friedman DS, He M. Anterior chamber angle assessment techniques[J]. Surv Ophthalmol, 2008, 53(3): 250-273.
[4]
Foster PJ, Devereux JG, Alsbirk PH, et al. Detection of gonioscopically occludable angles and primary angle closure glaucoma by estimation of limbal chamber depth in Asians: modified grading scheme[J]. Br J Ophthalmol, 2000, 84(2): 186-192.
[5]
Sihota R, Kamble N, Sharma AK, et al. ′Van Herick Plus′:a modified grading scheme for the assessment of peripheral anterior chamber depth and angle[J]. Br J Ophthalmol, 2019, 103(7): 960-965.
[6]
Baskaran M, Oen FT, Chan YH, et al. Comparison of the scanning peripheral anterior chamber depth analyzer and the modified van Herick grading system in the assessment of angle closure[J]. Ophthalmology, 2007, 114(3): 501-506.
[7]
Javed A, Loutfi M, Kaye S, et al. Interobserver reliability when using the Van Herick method to measure anterior chamber depth[J]. Oman J Ophthalmol, 2017, 10(1): 9-12.
[8]
Pathak Ray V, Ramesh SB, Rathi V. Slit-lamp measurement of anterior chamber depth and its agreement with anterior segment optical coherence tomography and Lenstar LS 900 in pseudoexfoliation and normal eyes[J]. Indian J Ophthalmol, 2021, 69(9): 2469-2474.
[9]
张烁,潘晓华,曹凯,等. 裂隙灯周边前房评价方法筛查原发性可疑房角关闭的效能研究[J]. 慢性病学杂志202223(12): 1761-1764.
[10]
Shimizu E, Yazu H, Aketa N, et al. A Study Validating the Estimation of Anterior Chamber Depth and Iridocorneal Angle with Portable and Non-Portable Slit-Lamp Microscopy[J]. Sensors (Basel), 2021, 21(4): s21041436.
[11]
Jindal A, Ctori I, Virgili G, et al. Non-contact tests for identifying people at risk of primary angle closure glaucoma[J]. Cochrane Database Syst Rev, 2020, 5(5): Cd012947.
[12]
V KS, Hong XJ, V MM, et al. Progress in anterior chamber angle imaging for glaucoma risk prediction: A review on clinical equipment, practice and research[J]. Med Eng Phys, 2016, 38(12): 1383-1391.
[13]
Coleman AL, Yu F, Evans SJ. Use of gonioscopy in medicare beneficiaries before glaucoma surgery[J]. J Glaucoma, 2006, 15(6): 486-493.
[14]
Raluca M, Mircea F, Andrei F, et al. Old and new in exploring the anterior chamber angle[J]. Rom J Ophthalmol, 2015, 59(4): 208-216.
[15]
Shaffer RN. Primary glaucomas. Gonioscopy, ophthalmoscopy and perimetry[J]. Trans Am Acad Ophthalmol Otolaryngol, 1960, 64: 112-127.
[16]
Spaeth EB. An analysis of the causes, types, and factors important to the correction of congenital blepharoptosis[J]. Am J Ophthalmol, 1971, 71(3): 696-717.
[17]
Mou DP, Liang YB, Fan SJ, et al. Progression rate to primary angle closure following laser peripheral iridotomy in primary angle-closure suspects: a randomised study[J]. Int J Ophthalmol, 2021, 14(8): 1179-1184.
[18]
He M, Jiang Y, Huang S, et al. Laser peripheral iridotomy for the prevention of angle closure: a single-centre, randomised controlled trial[J]. Lancet, 2019, 393(10181): 1609-1618.
[19]
Teixeira F, Sousa DC, Leal I, et al. Automated gonioscopy photography for iridocorneal angle grading[J]. Eur J Ophthalmol, 2020, 30(1): 112-118.
[20]
Barbour-Hastie C, Deol SS, Peroni A, et al. Feasibility of Automated Gonioscopy Imaging in Clinical Practice[J]. J Glaucoma, 2023, 32(3): 159-164.
[21]
Baskaran M, Aung T, Friedman DS, et al. Comparison of EyeCam and anterior segment optical coherence tomography in detecting angle closure[J]. Acta Ophthalmol, 2012, 90(8): e621-e625.
[22]
Perera SA, Baskaran M, Friedman DS, et al. Use of EyeCam for imaging the anterior chamber angle[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 2993-2997.
[23]
Xu BY, Pardeshi AA, Burkemper B, et al. Differences in Anterior Chamber Angle Assessments Between Gonioscopy, EyeCam, and Anterior Segment OCT: The Chinese American Eye Study[J]. Transl Vis Sci Technol, 2019, 8(2): 5.
[24]
Bell NP, Nagi KS, Cumba RJ, et al. Age and positional effect on the anterior chamber angle: assessment by ultrasound biomicroscopy[J]. ISRN Ophthalmol, 2013: 706201.
[25]
Takagi Y, Watanabe M, Kojima T, et al. Comparison of the efficacy and invasiveness of manual and automated gonioscopy[J]. PLoS One, 2023, 18(4): 0284098.
[26]
Sherar MD, Starkoski BG, Taylor WB, et al. A 100 MHz B-scan ultrasound backscatter microscope[J]. Ultrason Imaging, 1989, 11(2): 95-105.
[27]
Potop V, Coviltir V, Schmitzer S, et al. Ultrasound biomicroscopy as a vital tool in occult phacomorphic glaucoma[J]. Rom J Ophthalmol, 2019, 63(4): 311-314.
[28]
Radhakrishnan S, Goldsmith J, Huang D, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles[J]. Arch Ophthalmol, 2005, 123(8): 1053-1059.
[29]
Lin Z, Mou da P, Liang YB, et al. Reproducibility of anterior chamber angle measurement using the Tongren ultrasound biomicroscopy analysis system[J]. J Glaucoma, 2014, 23(2): 61-68.
[30]
Shi Y, Han Y, Xin C, et al. Disease-related and age-related changes of anterior chamber angle structures in patients with primary congenital glaucoma: An in vivo high-frequency ultrasound biomicroscopy-based study[J]. PLoS One, 2020, 15(1): e0227602.
[31]
Tekcan H, Mangan MS, Celik G, et al. Lens factor as an underlying mechanism in primary angle closure with gonioscopically-visualized ciliary body processes[J]. Jpn J Ophthalmol, 2023: 37596442.
[32]
Wang Z, Huang J, Lin J, et al. Quantitative measurements of the ciliary body in eyes with malignant glaucoma after trabeculectomy using ultrasound biomicroscopy[J]. Ophthalmology, 2014, 121(4): 862-869.
[33]
Urbak SF, Pedersen JK, Thorsen TT. Ultrasound biomicroscopy. II. Intraobserver and interobserver reproducibility of measurements[J]. Acta Ophthalmol Scand, 1998, 76(5): 546-549.
[34]
Konstantopoulos A, Hossain P, Anderson DF. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?[J]. Br J Ophthalmol, 2007, 91(4): 551-557.
[35]
Dada T, Gadia R, Sharma A, et al. Ultrasound biomicroscopy in glaucoma[J]. Surv Ophthalmol, 2011, 56(5): 433-450.
[36]
Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography[J]. Arch Ophthalmol, 1994, 112(12): 1584-1589.
[37]
Maslin JS, Barkana Y, Dorairaj SK. Anterior segment imaging in glaucoma: An updated review[J]. Indian J Ophthalmol, 2015, 63(8): 630-640.
[38]
Nolan WP, See JL, Chew PT, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes[J]. Ophthalmology, 2007, 114(1): 33-39.
[39]
Baskaran M, Iyer JV, Narayanaswamy AK, et al. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure[J]. Ophthalmology, 2015, 122(12): 2380-2384.
[40]
Cheung CY, Zheng C, Ho CL, et al. Novel anterior-chamber angle measurements by high-definition optical coherence tomography using the Schwalbe line as the landmark[J]. Br J Ophthalmol, 2011, 95(7): 955-959.
[41]
Li P, Johnstone M, Wang RK. Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm[J]. J Biomed Opt, 2014, 19(4): 046013.
[42]
Porporato N, Baskaran M, Tun TA, et al. Assessment of Circumferential Angle Closure with Swept-Source Optical Coherence Tomography: a Community Based Study[J]. Am J Ophthalmol, 2019, 199: 133-139.
[43]
Porporato N, Baskaran M, Tun TA, et al. Understanding diagnostic disagreement in angle closure assessment between anterior segment optical coherence tomography and gonioscopy[J]. Br J Ophthalmol, 2020, 104(6): 795-799.
[44]
Nongpiur ME, Sakata LM, Friedman DS, et al. Novel association of smaller anterior chamber width with angle closure in Singaporeans[J]. Ophthalmology, 2010, 117(10): 1967-1973.
[45]
Porporato N, Chong R, Xu BY, et al. Angle closure extent, anterior segment dimensions and intraocular pressure[J]. Br J Ophthalmol, 2023, 107(7): 927-934.
[46]
Ma P, Wu Y, Oatts J, et al. Evaluation of the Diagnostic Performance of Swept-Source Anterior Segment Optical Coherence Tomography in Primary Angle Closure Disease[J]. Am J Ophthalmol, 2022, 233: 68-77.
[47]
Yu B, Wang K, Zhang X, et al. Biometric indicators of anterior segment parameters before and after laser peripheral iridotomy by swept-source optical coherent tomography[J]. BMC Ophthalmol, 2022, 22(1): 222.
[48]
Crowell EL, Baker L, Chuang AZ, et al. Characterizing Anterior Segment OCT Angle Landmarks of the Trabecular Meshwork Complex[J]. Ophthalmology, 2018, 125(7): 994-1002.
[49]
Fu H, Baskaran M, Xu Y, et al. A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images[J]. Am J Ophthalmol, 2019, 203: 37-45.
[50]
Fu H, Xu Y, Lin S, et al. Angle-Closure Detection in Anterior Segment OCT Based on Multilevel Deep Network[J]. IEEE Trans Cybern, 2020, 50(7): 3358-3366.
[51]
Hao H, Zhao Y, Yan Q, et al. Angle-closure assessment in anterior segment OCT images via deep learning[J]. Med Image Anal, 2021, 69: 101956.
[52]
Liu P, Higashita R, Guo PY, et al. Reproducibility of deep learning based scleral spur localisation and anterior chamber angle measurements from anterior segment optical coherence tomography images[J]. Br J Ophthalmol, 2023, 107(6): 802-808.
[53]
Espinoza G, Iglesias K, Parra JC, et al. Agreement and Reproducibility of Anterior Chamber Angle Measurements between CASIA2 Built-In Software and Human Graders[J]. J Clin Med, 2023, 12(19): 37835024.
[54]
Yang G, Li K, Yao J, et al. Automatic measurement of anterior chamber angle parameters in AS-OCT images using deep learning[J]. Biomed Opt Express, 2023, 14(4): 1378-1392.
[55]
Hao J, Li F, Hao H, et al. Hybrid Variation-Aware Network for Angle-Closure Assessment in AS-OCT[J]. IEEE Trans Med Imaging, 2022, 41(2): 254-265.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[6] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[7] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[8] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[9] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[10] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[11] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[12] 张志宏, 吕爱国, 路平, 郭丽, 崔宏宇, 胡建华, 王立芳, 王延岭, 范肃洁. 超声乳化白内障吸除联合后房型人工晶状体植入及前房角镜下前房角分离术治疗急性闭角型青光眼合并白内障的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(05): 263-267.
[13] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[14] 林明玥, 周祁, 刘歆, 曲申, 陈开传, 吕筱, 韩雯婷, 毕燕龙. 术中光学相干断层扫描辅助玻璃体Berger腔切除术的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 199-204.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要