[1] |
Congdon NG, Spaeth GL, Augsburger J, et al. A proposed simple method for measurement in the anterior chamber angle: biometric gonioscopy[J]. Ophthalmology, 1999, 106(11): 2161-2167.
|
[2] |
Porporato N, Baskaran M, Husain R, et al. Recent advances in anterior chamber angle imaging[J]. Eye (Lond), 2020, 34(1): 51-59.
|
[3] |
Friedman DS, He M. Anterior chamber angle assessment techniques[J]. Surv Ophthalmol, 2008, 53(3): 250-273.
|
[4] |
Foster PJ, Devereux JG, Alsbirk PH, et al. Detection of gonioscopically occludable angles and primary angle closure glaucoma by estimation of limbal chamber depth in Asians: modified grading scheme[J]. Br J Ophthalmol, 2000, 84(2): 186-192.
|
[5] |
Sihota R, Kamble N, Sharma AK, et al. ′Van Herick Plus′:a modified grading scheme for the assessment of peripheral anterior chamber depth and angle[J]. Br J Ophthalmol, 2019, 103(7): 960-965.
|
[6] |
Baskaran M, Oen FT, Chan YH, et al. Comparison of the scanning peripheral anterior chamber depth analyzer and the modified van Herick grading system in the assessment of angle closure[J]. Ophthalmology, 2007, 114(3): 501-506.
|
[7] |
Javed A, Loutfi M, Kaye S, et al. Interobserver reliability when using the Van Herick method to measure anterior chamber depth[J]. Oman J Ophthalmol, 2017, 10(1): 9-12.
|
[8] |
Pathak Ray V, Ramesh SB, Rathi V. Slit-lamp measurement of anterior chamber depth and its agreement with anterior segment optical coherence tomography and Lenstar LS 900 in pseudoexfoliation and normal eyes[J]. Indian J Ophthalmol, 2021, 69(9): 2469-2474.
|
[9] |
张烁,潘晓华,曹凯,等. 裂隙灯周边前房评价方法筛查原发性可疑房角关闭的效能研究[J]. 慢性病学杂志,2022,23(12): 1761-1764.
|
[10] |
Shimizu E, Yazu H, Aketa N, et al. A Study Validating the Estimation of Anterior Chamber Depth and Iridocorneal Angle with Portable and Non-Portable Slit-Lamp Microscopy[J]. Sensors (Basel), 2021, 21(4): s21041436.
|
[11] |
Jindal A, Ctori I, Virgili G, et al. Non-contact tests for identifying people at risk of primary angle closure glaucoma[J]. Cochrane Database Syst Rev, 2020, 5(5): Cd012947.
|
[12] |
V KS, Hong XJ, V MM, et al. Progress in anterior chamber angle imaging for glaucoma risk prediction: A review on clinical equipment, practice and research[J]. Med Eng Phys, 2016, 38(12): 1383-1391.
|
[13] |
Coleman AL, Yu F, Evans SJ. Use of gonioscopy in medicare beneficiaries before glaucoma surgery[J]. J Glaucoma, 2006, 15(6): 486-493.
|
[14] |
Raluca M, Mircea F, Andrei F, et al. Old and new in exploring the anterior chamber angle[J]. Rom J Ophthalmol, 2015, 59(4): 208-216.
|
[15] |
Shaffer RN. Primary glaucomas. Gonioscopy, ophthalmoscopy and perimetry[J]. Trans Am Acad Ophthalmol Otolaryngol, 1960, 64: 112-127.
|
[16] |
Spaeth EB. An analysis of the causes, types, and factors important to the correction of congenital blepharoptosis[J]. Am J Ophthalmol, 1971, 71(3): 696-717.
|
[17] |
Mou DP, Liang YB, Fan SJ, et al. Progression rate to primary angle closure following laser peripheral iridotomy in primary angle-closure suspects: a randomised study[J]. Int J Ophthalmol, 2021, 14(8): 1179-1184.
|
[18] |
He M, Jiang Y, Huang S, et al. Laser peripheral iridotomy for the prevention of angle closure: a single-centre, randomised controlled trial[J]. Lancet, 2019, 393(10181): 1609-1618.
|
[19] |
Teixeira F, Sousa DC, Leal I, et al. Automated gonioscopy photography for iridocorneal angle grading[J]. Eur J Ophthalmol, 2020, 30(1): 112-118.
|
[20] |
Barbour-Hastie C, Deol SS, Peroni A, et al. Feasibility of Automated Gonioscopy Imaging in Clinical Practice[J]. J Glaucoma, 2023, 32(3): 159-164.
|
[21] |
Baskaran M, Aung T, Friedman DS, et al. Comparison of EyeCam and anterior segment optical coherence tomography in detecting angle closure[J]. Acta Ophthalmol, 2012, 90(8): e621-e625.
|
[22] |
Perera SA, Baskaran M, Friedman DS, et al. Use of EyeCam for imaging the anterior chamber angle[J]. Invest Ophthalmol Vis Sci, 2010, 51(6): 2993-2997.
|
[23] |
Xu BY, Pardeshi AA, Burkemper B, et al. Differences in Anterior Chamber Angle Assessments Between Gonioscopy, EyeCam, and Anterior Segment OCT: The Chinese American Eye Study[J]. Transl Vis Sci Technol, 2019, 8(2): 5.
|
[24] |
Bell NP, Nagi KS, Cumba RJ, et al. Age and positional effect on the anterior chamber angle: assessment by ultrasound biomicroscopy[J]. ISRN Ophthalmol, 2013: 706201.
|
[25] |
Takagi Y, Watanabe M, Kojima T, et al. Comparison of the efficacy and invasiveness of manual and automated gonioscopy[J]. PLoS One, 2023, 18(4): 0284098.
|
[26] |
Sherar MD, Starkoski BG, Taylor WB, et al. A 100 MHz B-scan ultrasound backscatter microscope[J]. Ultrason Imaging, 1989, 11(2): 95-105.
|
[27] |
Potop V, Coviltir V, Schmitzer S, et al. Ultrasound biomicroscopy as a vital tool in occult phacomorphic glaucoma[J]. Rom J Ophthalmol, 2019, 63(4): 311-314.
|
[28] |
Radhakrishnan S, Goldsmith J, Huang D, et al. Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles[J]. Arch Ophthalmol, 2005, 123(8): 1053-1059.
|
[29] |
Lin Z, Mou da P, Liang YB, et al. Reproducibility of anterior chamber angle measurement using the Tongren ultrasound biomicroscopy analysis system[J]. J Glaucoma, 2014, 23(2): 61-68.
|
[30] |
Shi Y, Han Y, Xin C, et al. Disease-related and age-related changes of anterior chamber angle structures in patients with primary congenital glaucoma: An in vivo high-frequency ultrasound biomicroscopy-based study[J]. PLoS One, 2020, 15(1): e0227602.
|
[31] |
Tekcan H, Mangan MS, Celik G, et al. Lens factor as an underlying mechanism in primary angle closure with gonioscopically-visualized ciliary body processes[J]. Jpn J Ophthalmol, 2023: 37596442.
|
[32] |
Wang Z, Huang J, Lin J, et al. Quantitative measurements of the ciliary body in eyes with malignant glaucoma after trabeculectomy using ultrasound biomicroscopy[J]. Ophthalmology, 2014, 121(4): 862-869.
|
[33] |
Urbak SF, Pedersen JK, Thorsen TT. Ultrasound biomicroscopy. II. Intraobserver and interobserver reproducibility of measurements[J]. Acta Ophthalmol Scand, 1998, 76(5): 546-549.
|
[34] |
Konstantopoulos A, Hossain P, Anderson DF. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?[J]. Br J Ophthalmol, 2007, 91(4): 551-557.
|
[35] |
Dada T, Gadia R, Sharma A, et al. Ultrasound biomicroscopy in glaucoma[J]. Surv Ophthalmol, 2011, 56(5): 433-450.
|
[36] |
Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography[J]. Arch Ophthalmol, 1994, 112(12): 1584-1589.
|
[37] |
Maslin JS, Barkana Y, Dorairaj SK. Anterior segment imaging in glaucoma: An updated review[J]. Indian J Ophthalmol, 2015, 63(8): 630-640.
|
[38] |
Nolan WP, See JL, Chew PT, et al. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes[J]. Ophthalmology, 2007, 114(1): 33-39.
|
[39] |
Baskaran M, Iyer JV, Narayanaswamy AK, et al. Anterior Segment Imaging Predicts Incident Gonioscopic Angle Closure[J]. Ophthalmology, 2015, 122(12): 2380-2384.
|
[40] |
Cheung CY, Zheng C, Ho CL, et al. Novel anterior-chamber angle measurements by high-definition optical coherence tomography using the Schwalbe line as the landmark[J]. Br J Ophthalmol, 2011, 95(7): 955-959.
|
[41] |
Li P, Johnstone M, Wang RK. Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm[J]. J Biomed Opt, 2014, 19(4): 046013.
|
[42] |
Porporato N, Baskaran M, Tun TA, et al. Assessment of Circumferential Angle Closure with Swept-Source Optical Coherence Tomography: a Community Based Study[J]. Am J Ophthalmol, 2019, 199: 133-139.
|
[43] |
Porporato N, Baskaran M, Tun TA, et al. Understanding diagnostic disagreement in angle closure assessment between anterior segment optical coherence tomography and gonioscopy[J]. Br J Ophthalmol, 2020, 104(6): 795-799.
|
[44] |
Nongpiur ME, Sakata LM, Friedman DS, et al. Novel association of smaller anterior chamber width with angle closure in Singaporeans[J]. Ophthalmology, 2010, 117(10): 1967-1973.
|
[45] |
Porporato N, Chong R, Xu BY, et al. Angle closure extent, anterior segment dimensions and intraocular pressure[J]. Br J Ophthalmol, 2023, 107(7): 927-934.
|
[46] |
Ma P, Wu Y, Oatts J, et al. Evaluation of the Diagnostic Performance of Swept-Source Anterior Segment Optical Coherence Tomography in Primary Angle Closure Disease[J]. Am J Ophthalmol, 2022, 233: 68-77.
|
[47] |
Yu B, Wang K, Zhang X, et al. Biometric indicators of anterior segment parameters before and after laser peripheral iridotomy by swept-source optical coherent tomography[J]. BMC Ophthalmol, 2022, 22(1): 222.
|
[48] |
Crowell EL, Baker L, Chuang AZ, et al. Characterizing Anterior Segment OCT Angle Landmarks of the Trabecular Meshwork Complex[J]. Ophthalmology, 2018, 125(7): 994-1002.
|
[49] |
Fu H, Baskaran M, Xu Y, et al. A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images[J]. Am J Ophthalmol, 2019, 203: 37-45.
|
[50] |
Fu H, Xu Y, Lin S, et al. Angle-Closure Detection in Anterior Segment OCT Based on Multilevel Deep Network[J]. IEEE Trans Cybern, 2020, 50(7): 3358-3366.
|
[51] |
Hao H, Zhao Y, Yan Q, et al. Angle-closure assessment in anterior segment OCT images via deep learning[J]. Med Image Anal, 2021, 69: 101956.
|
[52] |
Liu P, Higashita R, Guo PY, et al. Reproducibility of deep learning based scleral spur localisation and anterior chamber angle measurements from anterior segment optical coherence tomography images[J]. Br J Ophthalmol, 2023, 107(6): 802-808.
|
[53] |
Espinoza G, Iglesias K, Parra JC, et al. Agreement and Reproducibility of Anterior Chamber Angle Measurements between CASIA2 Built-In Software and Human Graders[J]. J Clin Med, 2023, 12(19): 37835024.
|
[54] |
Yang G, Li K, Yao J, et al. Automatic measurement of anterior chamber angle parameters in AS-OCT images using deep learning[J]. Biomed Opt Express, 2023, 14(4): 1378-1392.
|
[55] |
Hao J, Li F, Hao H, et al. Hybrid Variation-Aware Network for Angle-Closure Assessment in AS-OCT[J]. IEEE Trans Med Imaging, 2022, 41(2): 254-265.
|