[1] |
Carneiro Â, Andrade JP. Nutritional and lifestyle interventions for age-related macular degeneration: a review[J]. Oxid Med Cell Longev, 2017: 6469138.
|
[2] |
Sene A, Apte RS. Eyeballing cholesterol effluxand macrophage function in disease pathogenesis[J].Trends Endocrinol Metab, 2014, 25(3): 107-114.
|
[3] |
Sene A, Chin-Yee D, Apte RS. Seeing through VEGF: innate and adaptive immunity in pathologicalangiogenesis in the eye[J]. Trends Mol Med, 2015, 21(1): 43-51.
|
[4] |
Tahiri H, Omri S, Yang C, et al. Lymphocytic microparticles modulate angiogenic properties of macrophages in laser-induced choroidal neovascularization[J]. Sci Rep, 2016, 6: 37391.
|
[5] |
Apte, RS. Tyrosine kinase inhibitors in age-related macular degeneration[J]. JAMA Ophthalmol, 2017, 135(7): 767-768.
|
[6] |
Costa R, Carneiro BA, Chandra S, et al. Spotlight on lenvatinib in the treatment of thyroid cancer: patient selection and perspectives [J]. Drug Des DevelTher, 2016, 10: 873-884.
|
[7] |
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Global Health, 2014, 2(2): e106-116.
|
[8] |
Ye H, Zhang Q, Liu X, et al. Prevalence of age-related macular degeneration in an elderly urban chinese population in China: the Jiangning Eye Study [J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6374-6380.
|
[9] |
Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9871): 713-720.
|
[10] |
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516.
|
[11] |
Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients[J]. Stem Cell Reports, 2015, 4(5): 860-872.
|
[12] |
Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration[J]. New England Journal of Medicine, 2017, 376(11): 1038-1046.
|
[13] |
Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2006, 355(14): 1419-1431.
|
[14] |
Bashshur ZF, Bazarbachi A, Schakal A, et al. Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration[J]. Am J Ophthalmol, 2006, 142(1): 1-9.
|
[15] |
Browm DM, Heier JS, Ciulia T, et al. Primary endpoint results of a phase Ⅱ study of vascular endothelial growth factor trap-eye in wet age-relatedmacular degeneration [J]. Ophthalmology, 2011, 118(6): 1089-1097.
|
[16] |
Dugel PU, Koh A, Ogura Y, et al. HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration[J]. Ophthalmology, 2020, 127(1): 72-84.
|
[17] |
Campochiaro PA, Marcus DM, Awh CC, et al. The port delivery system with ranibizumab for neovascular age-related macular degeneration[J]. Ophthalmology, 2019, 126(8): 1141-1154.
|
[18] |
Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema[J]. Ophthalmology, 2016, 123(13): 1351-1359.
|
[19] |
Bergers G, Song S, Meyer-Morse N, et al. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors [J]. J Clin Invest, 2003, 111(9): 1287-1295.
|
[20] |
Yin X, Lin X, Ren X, et al. Novel multi-targeted inhibitors suppress ocular neovascularization by regulating unique gene sets [J]. Pharmacol Res, 2019, 146: 104277.
|
[21] |
Csaky KG, Dugel PU, Pierce AJ, et al. Clinical evaluation of pazopanib eye drops versus ranibizumab intravitreal injections in subjects with neovascular age-related macular degeneration [J]. Ophthalmology, 2015, 122(3): 579-588.
|
[22] |
Chengda R, Hui S, Juanjuan J, et al. The Effect of CM082, an oral tyrosine kinase inhibitor, on experimental choroidal neovascularization in rats[J]. Journal of Ophthalmology, 2017: 6145651.
|
[23] |
Jackson TL, Boyer D, Brown DM, et al. Oral tyrosine kinase inhibitor for neovascular age-related macular degeneration: a phase 1 dose-escalation study[J]. JAMA Ophthalmology, 2017, 135(7): 767-768.
|
[24] |
Yamamoto Y, Matsui J, Matsushima T, et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage[J]. Vasc Cell, 2014, 6: 18.
|
[25] |
Zhang L, Shan Y, Li C, et al. Discovery of novel anti-angiogenesis agents. Part 6: Multi-targeted RTK inhibitors [J]. Eur J Med Chem, 2017, 127: 275-285.
|
[26] |
Nakazawa Y, Kawano S, Matsui J, et al. Multitargeting strategy using lenvatinib and golvatinib: maximizing anti-angiogenesis activity in a preclinical cancer model[J]. Cancer Sci, 2015, 106(2): 201-207.
|
[27] |
Wei X, Zhang T, Yao Y, et al. Efficacy of Lenvatinib, a multitargeted tyrosine kinase inhibitor, on laser-induced CNV mouse model of neovascular AMD[J]. Exp Eye Res, 2018, 168: 2-11.
|
[28] |
Bora PS, Sohn JH, Cruz JM, et al. Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization [J]. J Immunol, 2005, 174(1): 491-497.
|
[29] |
Jo N, Mailhos C, Ju M, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization [J]. Am J Pathol, 2006, 168(6): 2036-2053.
|