切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 219 -225. doi: 10.3877/cma.j.issn.2095-2007.2020.04.005

论著

酪氨酸激酶抑制剂E7080治疗大鼠脉络膜新生血管的实验研究
张敬学1, 闫雪静1, 刘谦1, 武珅1,()   
  1. 1. 100730,首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2020-08-06 出版日期:2020-08-28
  • 通信作者: 武珅
  • 基金资助:
    国家重点研发计划(2017YFA0104102); 北京市属医学科研院所公益发展改革试点项目(京医研2018-2); 北京市医院管理中心"青苗"计划(QML20180208)

Effect of tyrosine kinase inhibitor E7080 on laser induced choroidal neovascularization in rat

jingxue Zhang1, Xuejing Yan1, Qian Liu1, Shen Wu1,()   

  1. 1. Beijing Tongren Eye Cener, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Ophthalmology & Visual Sciences Key Lab., Beijing 100730, China
  • Received:2020-08-06 Published:2020-08-28
  • Corresponding author: Shen Wu
引用本文:

张敬学, 闫雪静, 刘谦, 武珅. 酪氨酸激酶抑制剂E7080治疗大鼠脉络膜新生血管的实验研究[J]. 中华眼科医学杂志(电子版), 2020, 10(04): 219-225.

jingxue Zhang, Xuejing Yan, Qian Liu, Shen Wu. Effect of tyrosine kinase inhibitor E7080 on laser induced choroidal neovascularization in rat[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2020, 10(04): 219-225.

目的

探讨酪氨酸激酶抑制剂E7080对实验大鼠脉络膜新生血管(CNV)的抑制作用。

方法

成年雄性棕色挪威大鼠60只,由北京维通利华实验动物公司提供。采用数字表法将大鼠随机分为对照组、E7080低剂量组(10 mg·kg-1·d-1)及E7080高剂量组(20 mg·kg-1·d-1),每组各20只。采用激光诱导实验大鼠形成CNV,以完成动物模型的制作。7 d后,按不同分组给药干预。分别于造模后7 d及给药后7 d、14 d采用荧光素眼底血管造影检查CNV形成与荧光渗漏的情况。分别于给药后7 d和14 d,采用组织病理学的方法评估CNV的病理情况。分别于造模后7 d及给药后14 d,采用视网膜色素上皮层-脉络膜-巩膜复合体铺片植物凝集素B4染色观察CNV的面积。CNV荧光信号的强度、CNV荧光信号的厚度以及凝集素B4染色的CNV面积,以均数±标准差进行描述。多组样本间不同组间均数的比较,采用重复测量资料的方差分析,采用LSD检验进行两两比较。

结果

荧光素眼底血管造影的检查结果显示,给药7 d后,低剂量组和高剂量组实验大鼠CNV相对渗漏荧光信号的强度分别为(0.5378±0.0967)和(0.3774±0.086),均低于对照组的(0.6752±0.095),差异具有统计学意义(t=6.342,13.99;P<0.05);给药14 d后,低剂量组和高剂量组的CNV相对渗漏荧光信号强度分别为(0.5735±0.0726)和(0.4071±0.1197),也均低于对照组(0.7305±0.0924),差异有统计学意义(t=6.92,14.50;P<0.05)。苏木精-伊红染色结果显示,药物处理7 d后,低剂量组和高剂量组的CNV厚度分别为(84.14±8.829)μm和(77.23±9.365)μm,均低于对照组的(125.3±18.18)μm,差异具有统计学意义(t=7.38,8.628;P<0.05);药物处理14 d后,低剂量组和高剂量组的CNV厚度分别为(86.21±10.51)μm和(77.88±7.39)μm,均低于对照组的(147.9±19.66)μm,差异具有统计学意义(t=9.656,10.44;P<0.05)。视网膜色素上皮层-脉络膜-巩膜复合体铺片荧光染色显示,低剂量组和高剂量组实验大鼠CNV的平均面积分别为(18 991±8665)μm2和(20 083±11 759)μm2,均低于对照组的(51 156±24 348)μm2,差异具有统计学意义(t= 6.039,6.593; P<0.05),在用药不同浓度之间的差异无统计学意义(t=0.2174,P>0.05)。

结论

口服酪氨酸激酶抑制剂E7080可以抑制激光诱导的大鼠CNV的形成及相关的病理损害。

Objective

The aim of this study was to expolre the effect of tyrosine kinase inhibitor E7080 on laser-induced choroidal neovascularization in rats.

Methods

Sixty adult male brown Norway rats were provided by Beijing Vital River Laboratory Animal Technology Co. Ltd. They were randomly divided into control group, E7080 low-dose (10 mg·kg-1·d-1) group, and E7080 high-dose (20 mg·kg-1·d-1) group according to random number table. The choroidal neovascularization was induced by fundus laser photocoagulation. The drug was applied at seven days after laser photocoagulation. Fundus fluorescein angiography was used to check choroidal neovascularization formation and fluorescence leakage at 7 days after laser photocoagulation, 7 days and 14 days after drug administration. The histology of choroidal neovascularization was assessed by histopathological examination at 7 days and 14 days after administration. The area of choroidal neovascularization was observed by staining isolectin B4 on RPE-choroid-sclera flat mounts. The CNV fluorescence signal intensity, thickness and CNV area stained with lectin B4s were statistically described as mean±standard deviation (Mean±SD). The comparison of the mean between different groups among multiple samples adopts repeated measures analysis of variance, and LSD test was used for pairwise comparison.

Results

FFA showed that after 7 days of administration, the relative leakage fluorescence signal intensity of CNV in the low-dose group and the high-dose group were (0.5378±0.0967) and (0.3774±0.086) respectively, which were lower than those of the control group (0.6752±0.095); the difference was statistically significant (t=6.342, 13.99; P<0.05); 14 days after administration, the relative leakage fluorescence signal intensity of CNV in the low-dose group and the high-dose group were (0.5735±0.0726), (0.4071±0.1197), also lower than the control group (0.7305±0.0924); the difference was statistically significant (t=6.92, 14.5; P<0.05). The results of hematoxylin-eosin staining showed that after 7 days of drug treatment, the CNV thickness of the low-dose group and the high-dose group were (84.14±8.829) μm and (77.23±9.365) μm, respectively, which were lower than those of the control group (125.3±18.18) μm; the difference was statistically significant (t=7.38, 8.628; P<0.05); 14 days after drug treatment, the CNV thickness of the low-dose group and the high-dose group were (86.21±10.51) μm and (77.88±7.39) μm, respectively , which were lower than those of the control group (147.9±19.66) μm; the difference is statistically significant (t=9.656, 10.44; P<0.05). Fluorescence staining of the RPE-choroid-sclera flat mounts showed that the average area of choroidal neovascularization in the low-dose group and high-dose group were (18 991±8665) μm2 and (20 083±11759) μm2, respectively, which were lower than those of the control group (51 156± 24348) μm2; the difference was statistically significant (t= 6.039, 6.593; P<0.05), and there was no significant difference between the low-dose group and high-dose group (t=0.2174, P>0.05).

Conclusions

The tyrosine kinase inhibitor E7080 could inhibit laser-induced choroidal neovascularization and related pathological damage through oral administration in rats.

图1 激光造模后不同干预组实验大鼠的荧光素眼底血管造影图像及荧光强度比较的柱状图 图A~图C示0 d、7 d及14 d,荧光素眼底血管造影检查对照组实验大鼠脉络膜新生血管荧光渗漏的情况 图D~图F示0 d、7 d及14 d,荧光素眼底血管造影检查低剂量组实验大鼠脉络膜新生血管荧光渗漏的情况 图G~图I示0 d、7 d及14 d,荧光素眼底血管造影检查高剂量组实验大鼠脉络膜新生血管荧光渗漏的情况 图J示给药7 d后,不同药物处理组实验大鼠脉络膜新生血管相对荧光渗漏强度比较的柱状图,可见药物处理组的荧光强度显著低于对照组的荧光强度 图K示给药14 d后,不同药物处理组实验大鼠脉络膜新生血管相对荧光渗漏强度比较的柱状图,可见药物处理组的荧光强度显著低于对照组的荧光强度 图L~图M示在给药后不同时间,不同药物处理组的脉络膜新生血管的相对荧光渗漏强度比较的柱状图
图2 光学显微镜下,离体检查实验大鼠脉络膜新生血管的组织病理显微结构图及不同处理组实验大鼠脉络膜新生血管厚度比较的柱状图 图2A~图2C示在7 d,对照组、低剂量组及高剂量组实验大鼠脉络膜新生血管组织病理染色的显微结构图(H&E染色,×200) 图2D~图2F示在14 d,对照组、低剂量组及高剂量组实验大鼠脉络膜新生血管组织病理染色的显微结构图(H&E染色,×200) 图2G给药7 d后,不同药物处理组实验大鼠脉络膜新生血管厚度比较的柱状图,可见药物处理组实验大鼠脉络膜新生血管的厚度显著低于对照组 图2H示给药14 d后,不同药物处理组实验大鼠脉络膜新生血管厚度比较的柱状图,可见药物处理组实验大鼠脉络膜新生血管的厚度显著低于对照组  *与对照组比较,差异具有统计学意义
图3 共聚焦显微镜下实验大鼠视网膜色素上皮层-脉络膜-巩膜铺片植物凝集素B4免疫荧光染色的显微结构图及荧光表达差异的柱状图 图3A~图3C示在7 d,对照组、低剂量组及高剂量组脉络膜新生血管植物凝集素B4染色的显微结构图(IB4染色,×400) 图3D~3F示在14 d,对照组、低剂量组及高剂量组实验大鼠脉络膜新生血管植物凝集素B4染色的显微结构图(IB4染色,×400) 图3G示给药14 d后,不同药物处理组实验大鼠植物凝集素B4染色平均荧光强度比较的柱状图,可见药物处理组的平均荧光强度显著低于对照组 图3H示给药14 d后,不同药物处理组实验大鼠脉络膜新生血管植物凝集素B4染色平均面积比较的柱状图,可见药物处理组的平均面积显著低于对照组  *与对照组比较,差异具有统计学意义
[1]
Carneiro Â, Andrade JP. Nutritional and lifestyle interventions for age-related macular degeneration: a review[J]. Oxid Med Cell Longev, 2017: 6469138.
[2]
Sene A, Apte RS. Eyeballing cholesterol effluxand macrophage function in disease pathogenesis[J].Trends Endocrinol Metab, 2014, 25(3): 107-114.
[3]
Sene A, Chin-Yee D, Apte RS. Seeing through VEGF: innate and adaptive immunity in pathologicalangiogenesis in the eye[J]. Trends Mol Med, 2015, 21(1): 43-51.
[4]
Tahiri H, Omri S, Yang C, et al. Lymphocytic microparticles modulate angiogenic properties of macrophages in laser-induced choroidal neovascularization[J]. Sci Rep, 2016, 6: 37391.
[5]
Apte, RS. Tyrosine kinase inhibitors in age-related macular degeneration[J]. JAMA Ophthalmol, 2017, 135(7): 767-768.
[6]
Costa R, Carneiro BA, Chandra S, et al. Spotlight on lenvatinib in the treatment of thyroid cancer: patient selection and perspectives [J]. Drug Des DevelTher, 2016, 10: 873-884.
[7]
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Global Health, 2014, 2(2): e106-116.
[8]
Ye H, Zhang Q, Liu X, et al. Prevalence of age-related macular degeneration in an elderly urban chinese population in China: the Jiangning Eye Study [J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6374-6380.
[9]
Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9871): 713-720.
[10]
Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516.
[11]
Song WK, Park KM, Kim HJ, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients[J]. Stem Cell Reports, 2015, 4(5): 860-872.
[12]
Mandai M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration[J]. New England Journal of Medicine, 2017, 376(11): 1038-1046.
[13]
Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2006, 355(14): 1419-1431.
[14]
Bashshur ZF, Bazarbachi A, Schakal A, et al. Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration[J]. Am J Ophthalmol, 2006, 142(1): 1-9.
[15]
Browm DM, Heier JS, Ciulia T, et al. Primary endpoint results of a phase Ⅱ study of vascular endothelial growth factor trap-eye in wet age-relatedmacular degeneration [J]. Ophthalmology, 2011, 118(6): 1089-1097.
[16]
Dugel PU, Koh A, Ogura Y, et al. HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration[J]. Ophthalmology, 2020, 127(1): 72-84.
[17]
Campochiaro PA, Marcus DM, Awh CC, et al. The port delivery system with ranibizumab for neovascular age-related macular degeneration[J]. Ophthalmology, 2019, 126(8): 1141-1154.
[18]
Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema[J]. Ophthalmology, 2016, 123(13): 1351-1359.
[19]
Bergers G, Song S, Meyer-Morse N, et al. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors [J]. J Clin Invest, 2003, 111(9): 1287-1295.
[20]
Yin X, Lin X, Ren X, et al. Novel multi-targeted inhibitors suppress ocular neovascularization by regulating unique gene sets [J]. Pharmacol Res, 2019, 146: 104277.
[21]
Csaky KG, Dugel PU, Pierce AJ, et al. Clinical evaluation of pazopanib eye drops versus ranibizumab intravitreal injections in subjects with neovascular age-related macular degeneration [J]. Ophthalmology, 2015, 122(3): 579-588.
[22]
Chengda R, Hui S, Juanjuan J, et al. The Effect of CM082, an oral tyrosine kinase inhibitor, on experimental choroidal neovascularization in rats[J]. Journal of Ophthalmology, 2017: 6145651.
[23]
Jackson TL, Boyer D, Brown DM, et al. Oral tyrosine kinase inhibitor for neovascular age-related macular degeneration: a phase 1 dose-escalation study[J]. JAMA Ophthalmology, 2017, 135(7): 767-768.
[24]
Yamamoto Y, Matsui J, Matsushima T, et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage[J]. Vasc Cell, 2014, 6: 18.
[25]
Zhang L, Shan Y, Li C, et al. Discovery of novel anti-angiogenesis agents. Part 6: Multi-targeted RTK inhibitors [J]. Eur J Med Chem, 2017, 127: 275-285.
[26]
Nakazawa Y, Kawano S, Matsui J, et al. Multitargeting strategy using lenvatinib and golvatinib: maximizing anti-angiogenesis activity in a preclinical cancer model[J]. Cancer Sci, 2015, 106(2): 201-207.
[27]
Wei X, Zhang T, Yao Y, et al. Efficacy of Lenvatinib, a multitargeted tyrosine kinase inhibitor, on laser-induced CNV mouse model of neovascular AMD[J]. Exp Eye Res, 2018, 168: 2-11.
[28]
Bora PS, Sohn JH, Cruz JM, et al. Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization [J]. J Immunol, 2005, 174(1): 491-497.
[29]
Jo N, Mailhos C, Ju M, et al. Inhibition of platelet-derived growth factor B signaling enhances the efficacy of anti-vascular endothelial growth factor therapy in multiple models of ocular neovascularization [J]. Am J Pathol, 2006, 168(6): 2036-2053.
[1] 李咏生, 孙建国, 李梦侠, 重庆肺癌精准治疗协作组(CPLOG). 第三代EGFR-TKI耐药后诊疗策略专家共识[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 145-155.
[2] 沈冶中, 胡智刚, 吴黎明, 伍宏玲. EGFR-TKI联合放疗对NSCLC脑转移的临床分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 844-846.
[3] 饶汕, 陈瑞, 吕晶. EGFR-TKI化疗后NSCLC肺叶切除术的疗效分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 700-702.
[4] 付光明, 刘平, 吴芳, 向晓康, 胡春宏, 刘先领, 熊慧. 一代EGFR-TKIs治疗后进展的晚期NSCLC外周血T790M突变特征[J]. 中华肺部疾病杂志(电子版), 2021, 14(02): 169-173.
[5] 王康, 胡雪婷, 罗虎, 周向东. 晚期肺腺癌患者维持治疗中EGFR-TKI联合放疗的回顾性分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(01): 17-23.
[6] 甘开梅, 黄剑. 肺癌干细胞对EGFR-TKI耐药影响的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 36-44.
[7] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
[8] 段如月, 张天资, 晓琴, 韩永青, 佟玉兰. 光学相干断层扫描血管成像技术在康柏西普对湿性年龄相关性黄斑变性治疗效果评价中的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 140-145.
[9] 周欣, 张慧媛, 王淑静, 朱华, 杨志, 李囡. 非小细胞肺癌靶向PET显像的临床研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(02): 123-128.
[10] 续文栋, 吕朋, 李健, 王昊, 马金山. 表皮生长因子受体酪氨酸激酶抑制剂与非小细胞肺癌的临床研究现状[J]. 中华胸部外科电子杂志, 2018, 05(03): 184-188.
阅读次数
全文


摘要