[1] |
Zhang A, Zhang Q, Chen CL, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. J Biomed Opt, 2015, 20(10): 100901.
|
[2] |
吕湘云,艾明. 光学相干断层扫描血管成像(OCTA)在黄斑疾病中的应用进展[J]. 眼科新进展,2019,39(1):94-97.
|
[3] |
魏文斌,周楠. 光相干断层扫描血管成像在眼底疾病临床应用中的不足及前景[J]. 中华眼底病杂志,2018,34(4):317-322.
|
[4] |
Cole ED, Moult EM, Dang S, et al. The definition, rationale, and effects of thresholding in OCT angiography[J]. Ophthalmol Retina, 2017, 1(5): 435-447.
|
[5] |
Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2163-2180.
|
[6] |
Anderson B. Ocular effects of changes in oxygen and carbon dioxide tension[J]. Trans Am Ophthalmol Soc, 1968, 66: 423-474.
|
[7] |
Hayreh SS. Segmental nature of the choroidal vasculature[J]. Br J Ophthalmol, 1975, 59(11): 631-648.
|
[8] |
Provis JM. Development of the primate retinal vasculature[J]. Prog Retin Eye Res, 2001, 20(6): 799-821.
|
[9] |
Tan PE, Yu PK, Balaratnasingam C, et al. Quantitative confocal imaging of the retinal microvasculature in the human retina[J]. Invest Ophth Vis Sci, 2012, 53(9): 5728-5736.
|
[10] |
Choi W, Waheed NK, Moult EM, et al. Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy[J]. Retina, 2017, 37(1): 11-21.
|
[11] |
Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50.
|
[12] |
Tan CS, Chew MC, van Hemert J, et al. Measuring the precise area of peripheral retinal non-perfusion using ultra-widefield imaging and its correlation with the ischaemic index[J]. Br J Ophthalmol, 2016, 100(2): 235-239.
|
[13] |
Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography[J]. Sci Rep, 2017, 7: 42201.
|
[14] |
Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64: 1-55.
|
[15] |
Chan G, Balaratnasingam C, Yu PK, et al. Quantitative morphometry of perifoveal capillary networks in the human retina[J]. Invest Ophth Vis Sci, 2012, 53(9): 5502-5514.
|
[16] |
Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications[J]. Prog Retin Eye Res, 2017, 60: 66-100.
|
[17] |
Spaide RF, Curcio CA. Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes[J]. JAMA Ophthalmol, 2017, 135(3): 259-262.
|
[18] |
Gariano RF, Iruela-Arispe ML, Hendrickson AE. Vascular development in primate retina: comparison of laminar plexus formation in monkey and human[J]. Invest Ophth Vis Sci, 1994, 35(9): 3442-3455.
|
[19] |
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy[J]. N Engl J Med, 2012, 366(13): 1227-1239.
|
[20] |
Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study[J]. Am J Ophthalmol, 2015, 160(1): 35-44.
|
[21] |
Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic retinopathy preferred practice pattern[J]. Ophthalmology, 2020, 127(1): 66-145.
|
[22] |
Salz DA, de Carlo TE, Adhi M, et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes[J]. JAMA Ophthalmol, 2016, 134(6): 644-650.
|
[23] |
Moore J, Bagley S, Ireland G, et al. Three dimensional analysis of microaneurysms in the human diabetic retina[J]. J Anat, 1999, 194: 89-100.
|
[24] |
Hasegawa N, Nozaki M, Takase N, et al. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema[J]. Invest Ophth Vis Sci, 2016, 57(9): 348-355.
|
[25] |
Spaide RF. Volume-rendered optical coherence tomography of diabetic retinopathy pilot study[J]. Am J Ophthalmol, 2015, 160(6): 1200-1210.
|
[26] |
de Carlo TE, Chin AT, Bonini-Filho MA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2364-2370.
|
[27] |
Dimitrova G, Chihara E, Takahashi H, et al. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy[J]. Invest Ophth Vis Sci, 2017, 58(1): 190-196.
|
[28] |
Song P, Xu Y, Zha M, et al. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors[J]. J Glob Health, 2019, 9(1): e010427.
|
[29] |
Suzuki N, Hirano Y, Tomiyasu T, et al. Retinal hemodynamics seen on optical coherence tomography angiography before and after treatment of retinal vein occlusion[J]. Invest Ophth Vis Sci, 2016, 57(13): 5681-5687.
|
[30] |
Adhi M, Filho MA, Louzada RN, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography[J]. Invest Ophth Vis Sci, 2016, 57(9): 486-494.
|
[31] |
Kang JW, Yoo R, Jo YH, et al. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion[J]. Retina, 2017, 37(9): 1700-1709.
|
[32] |
Casselholmde-Salles M, Kvanta A, Amrén U, et al. Optical coherence tomography angiography in central retinal vein occlusion: correlation between the foveal avascular zone and visual acuity[J]. Invest Ophth Vis Sci, 2016, 57(9): 242-246.
|
[33] |
Spaide RF. Volume-rendered optical coherence tomography of retinal vein occlusion pilot study[J]. Am J Ophthalmol, 2016, 165: 133-144.
|
[34] |
Mastropasqua R, Toto L, di Antonio L, et al. Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions[J]. Sci Rep, 2017, 7: 40763.
|
[35] |
Samara WA, Shahlaee A, Sridhar J, et al. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion[J]. Am J Ophthalmol, 2016, 166: 76-83.
|
[36] |
Moussa M, Leila M, Bessa AS, et al. Grading of macular perfusion in retinal vein occlusion using en-face swept-source optical coherence tomography angiography: a retrospective observational case series[J]. BMC Ophthalmol, 2019, 19(1): 127.
|
[37] |
Costanzo E, Parravano M, Gilardi M, et al. Microvascular retinal and choroidal changes in retinal vein occlusion analyzed by two different optical coherence tomography angiography devices[J]. Ophthalmologica, 2019, 242(1): 8-15.
|
[38] |
Kim JT, Chun YS, Lee JK, et al. Comparison of vessel density reduction in the deep and superficial capillary plexuses in branch retinal vein occlusion[J]. Ophthalmologica, 2020, 243(1): 66-74.
|
[39] |
Laíns I, Wang JC, Cui Y, et al. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA)[J]. Prog Retin Eye Res, 2021: 100951.
|
[40] |
Ledesma-Gil G, Essilfie J, Yannuzzi LA. Long-standing retinal artery occlusion: oct angiography versus fluorescein angiography[J]. Ophthalmol Retina, 2020, 4(1): 40.
|
[41] |
Baumal CR. Optical coherence tomography angiography of retinal artery occlusion[J]. Dev Ophthalmol, 2016, 56: 122-131.
|
[42] |
Palejwala NV, Jia Y, Gao SS, et al. Detection of nonexudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2204-2211.
|
[43] |
Freund KB, Zweifel SA, Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration?[J]. Retina, 2010, 30(9): 1333-1349.
|
[44] |
Inoue M, Jung JJ, Balaratnasingam C, et al. A comparison between optical coherence tomography angiography and fluorescein angiography for the imaging of type 1 neovascularization[J]. Invest Ophth Vis Sci, 2016, 57(9): 314-323.
|
[45] |
El Ameen A, Cohen SY, Semoun O, et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2212-2218.
|
[46] |
Green WR, Enger C. Age-related macular degeneration histopathologic studies[J]. Retina, 2005, 25: 1519-1535.
|
[47] |
Gong J, Yu S, Gong Y, et al. The Diagnostic Accuracy of optical coherence tomography angiography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography[J]. J Ophthalmol, 2016: 7521478.
|
[48] |
Kuehlewein L, Dansingani KK, de Carlo TE, et al. Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration[J]. Retina, 2015, 35(11): 2229-2235.
|
[49] |
Lumbroso B, Rispoli M, Savastano MC, et al. Optical coherence tomography angiography study of choroidal neovascularization early response after treatment[J]. Dev Ophthalmol, 2016, 56: 77-85.
|
[50] |
Moult EM, Waheed NK, Novais EA, et al. Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy[J]. Retina, 2016, 36: 2-11.
|
[51] |
Cheung CMG, Lai TYY, Ruamviboonsuk P, et al. Polypoidal choroidal vasculopathy: definition, pathogenesis, diagnosis, and management[J]. Ophthalmology, 2018, 125(5): 708-724.
|
[52] |
Bo Q, Yan Q, Shen M, et al. Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography[J]. JAMA Ophthalmol, 2019, 137(6): 642-650.
|
[53] |
Thorell MR, Zhang Q, Huang Y, et al. Swept-source OCT angiography of macular telangiectasia type 2[J]. Ophthalmic Surg Lasers Imaging Retina, 2014, 45(5): 369-380.
|
[54] |
Androudi S, Dastiridou A, Symeonidis C, et al. Retinal vasculitis in rheumatic diseases: an unseen burden[J]. Clin Rheumatol, 2013, 32(1): 7-13.
|
[55] |
Bojikian KD, Chen CL, Wen JC, et al. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography[J]. PloS One, 2016, 11(5): e0154691.
|