切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (01) : 47 -51. doi: 10.3877/cma.j.issn.2095-2007.2022.01.009

综述

光学相干断层扫描血管成像对视网膜血管形态学评估的研究进展
胡晨曦1, 唐楚皓1, 韩亮2, 段虹宇1, 杨婷婷1, 刘一昀1, 马佰凯1, 赵琳2, 齐虹2,()   
  1. 1. 100191 北京大学第三医院眼科2018级硕士研究生
    2. 100191 北京大学第三医院眼科 眼部神经损伤的重建保护与康复北京市重点实验室
  • 收稿日期:2021-03-16 出版日期:2022-02-28
  • 通信作者: 齐虹
  • 基金资助:
    国家自然科学基金资助项目(81400409); 国家自然科学基金面上项目(81974128); 首都卫生发展科研专项自主创新项目(2020-2-4097)

Advances on the morphological evaluation of retinal vessels by optical coherence tomography angiography

Chenxi Hu1, Chuhao Tang1, Liang Han2, Hongyu Duan1, Tingting Yang1, Yiyun Liu1, Baikai Ma1, Lin Zhao2, Hong Qi2,()   

  1. 1. Master′s degree 2018, Peking University Third Hospital, Beijing 100191,China
    2. Department of Ophthalmology, Peking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Beijing 100191,China
  • Received:2021-03-16 Published:2022-02-28
  • Corresponding author: Hong Qi
引用本文:

胡晨曦, 唐楚皓, 韩亮, 段虹宇, 杨婷婷, 刘一昀, 马佰凯, 赵琳, 齐虹. 光学相干断层扫描血管成像对视网膜血管形态学评估的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 47-51.

Chenxi Hu, Chuhao Tang, Liang Han, Hongyu Duan, Tingting Yang, Yiyun Liu, Baikai Ma, Lin Zhao, Hong Qi. Advances on the morphological evaluation of retinal vessels by optical coherence tomography angiography[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(01): 47-51.

光学相干断层扫描血管成像(OCTA)是一种新型无创的眼底血管检查技术,无需使用造影剂即可快速、清晰且直观地显示视网膜的各层血管状态。近10余年来,OCTA已被广泛应用于评估糖尿病视网膜病变、视网膜静脉阻塞、视网膜动脉阻塞、年龄相关性黄斑变性及炎症性视网膜血管疾病。本文中笔者就OCTA评估视网膜血管形态学的方法及其在临床应用中的研究进展进行综述。

As a new noninvasive fundus vessel examination technology, optical coherence tomography angiography (OCTA) can display the form of the layers of retinal vessels efficiently, clearly and intuitively without using contrast agent. In recent 10 years, OCTA has been widely used to evaluate a series of retinal vascular diseases, including diabetic retinopathy, retinal vein occlusion, retinal artery occlusion, age-related macular degeneration, inflammatory diseases and so on. Therefore, the methods of evaluating retinal vascular morphology with OCTA and its practical application in the diagnosis and treatment of various diseases were reviewed in this paper.

[1]
Zhang A, Zhang Q, Chen CL, et al. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison[J]. J Biomed Opt, 2015, 20(10): 100901.
[2]
吕湘云,艾明. 光学相干断层扫描血管成像(OCTA)在黄斑疾病中的应用进展[J]. 眼科新进展201939(1):94-97.
[3]
魏文斌,周楠. 光相干断层扫描血管成像在眼底疾病临床应用中的不足及前景[J]. 中华眼底病杂志201834(4):317-322.
[4]
Cole ED, Moult EM, Dang S, et al. The definition, rationale, and effects of thresholding in OCT angiography[J]. Ophthalmol Retina, 2017, 1(5): 435-447.
[5]
Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2163-2180.
[6]
Anderson B. Ocular effects of changes in oxygen and carbon dioxide tension[J]. Trans Am Ophthalmol Soc, 1968, 66: 423-474.
[7]
Hayreh SS. Segmental nature of the choroidal vasculature[J]. Br J Ophthalmol, 1975, 59(11): 631-648.
[8]
Provis JM. Development of the primate retinal vasculature[J]. Prog Retin Eye Res, 2001, 20(6): 799-821.
[9]
Tan PE, Yu PK, Balaratnasingam C, et al. Quantitative confocal imaging of the retinal microvasculature in the human retina[J]. Invest Ophth Vis Sci, 2012, 53(9): 5728-5736.
[10]
Choi W, Waheed NK, Moult EM, et al. Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy[J]. Retina, 2017, 37(1): 11-21.
[11]
Spaide RF, Klancnik JM, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J]. JAMA Ophthalmol, 2015, 133(1): 45-50.
[12]
Tan CS, Chew MC, van Hemert J, et al. Measuring the precise area of peripheral retinal non-perfusion using ultra-widefield imaging and its correlation with the ischaemic index[J]. Br J Ophthalmol, 2016, 100(2): 235-239.
[13]
Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography[J]. Sci Rep, 2017, 7: 42201.
[14]
Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64: 1-55.
[15]
Chan G, Balaratnasingam C, Yu PK, et al. Quantitative morphometry of perifoveal capillary networks in the human retina[J]. Invest Ophth Vis Sci, 2012, 53(9): 5502-5514.
[16]
Kashani AH, Chen CL, Gahm JK, et al. Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications[J]. Prog Retin Eye Res, 2017, 60: 66-100.
[17]
Spaide RF, Curcio CA. Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes[J]. JAMA Ophthalmol, 2017, 135(3): 259-262.
[18]
Gariano RF, Iruela-Arispe ML, Hendrickson AE. Vascular development in primate retina: comparison of laminar plexus formation in monkey and human[J]. Invest Ophth Vis Sci, 1994, 35(9): 3442-3455.
[19]
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy[J]. N Engl J Med, 2012, 366(13): 1227-1239.
[20]
Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study[J]. Am J Ophthalmol, 2015, 160(1): 35-44.
[21]
Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic retinopathy preferred practice pattern[J]. Ophthalmology, 2020, 127(1): 66-145.
[22]
Salz DA, de Carlo TE, Adhi M, et al. Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes[J]. JAMA Ophthalmol, 2016, 134(6): 644-650.
[23]
Moore J, Bagley S, Ireland G, et al. Three dimensional analysis of microaneurysms in the human diabetic retina[J]. J Anat, 1999, 194: 89-100.
[24]
Hasegawa N, Nozaki M, Takase N, et al. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema[J]. Invest Ophth Vis Sci, 2016, 57(9): 348-355.
[25]
Spaide RF. Volume-rendered optical coherence tomography of diabetic retinopathy pilot study[J]. Am J Ophthalmol, 2015, 160(6): 1200-1210.
[26]
de Carlo TE, Chin AT, Bonini-Filho MA, et al. Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2364-2370.
[27]
Dimitrova G, Chihara E, Takahashi H, et al. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy[J]. Invest Ophth Vis Sci, 2017, 58(1): 190-196.
[28]
Song P, Xu Y, Zha M, et al. Global epidemiology of retinal vein occlusion: a systematic review and meta-analysis of prevalence, incidence, and risk factors[J]. J Glob Health, 2019, 9(1): e010427.
[29]
Suzuki N, Hirano Y, Tomiyasu T, et al. Retinal hemodynamics seen on optical coherence tomography angiography before and after treatment of retinal vein occlusion[J]. Invest Ophth Vis Sci, 2016, 57(13): 5681-5687.
[30]
Adhi M, Filho MA, Louzada RN, et al. Retinal capillary network and foveal avascular zone in eyes with vein occlusion and fellow eyes analyzed with optical coherence tomography angiography[J]. Invest Ophth Vis Sci, 2016, 57(9): 486-494.
[31]
Kang JW, Yoo R, Jo YH, et al. Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion[J]. Retina, 2017, 37(9): 1700-1709.
[32]
Casselholmde-Salles M, Kvanta A, Amrén U, et al. Optical coherence tomography angiography in central retinal vein occlusion: correlation between the foveal avascular zone and visual acuity[J]. Invest Ophth Vis Sci, 2016, 57(9): 242-246.
[33]
Spaide RF. Volume-rendered optical coherence tomography of retinal vein occlusion pilot study[J]. Am J Ophthalmol, 2016, 165: 133-144.
[34]
Mastropasqua R, Toto L, di Antonio L, et al. Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions[J]. Sci Rep, 2017, 7: 40763.
[35]
Samara WA, Shahlaee A, Sridhar J, et al. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion[J]. Am J Ophthalmol, 2016, 166: 76-83.
[36]
Moussa M, Leila M, Bessa AS, et al. Grading of macular perfusion in retinal vein occlusion using en-face swept-source optical coherence tomography angiography: a retrospective observational case series[J]. BMC Ophthalmol, 2019, 19(1): 127.
[37]
Costanzo E, Parravano M, Gilardi M, et al. Microvascular retinal and choroidal changes in retinal vein occlusion analyzed by two different optical coherence tomography angiography devices[J]. Ophthalmologica, 2019, 242(1): 8-15.
[38]
Kim JT, Chun YS, Lee JK, et al. Comparison of vessel density reduction in the deep and superficial capillary plexuses in branch retinal vein occlusion[J]. Ophthalmologica, 2020, 243(1): 66-74.
[39]
Laíns I, Wang JC, Cui Y, et al. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA)[J]. Prog Retin Eye Res, 2021: 100951.
[40]
Ledesma-Gil G, Essilfie J, Yannuzzi LA. Long-standing retinal artery occlusion: oct angiography versus fluorescein angiography[J]. Ophthalmol Retina, 2020, 4(1): 40.
[41]
Baumal CR. Optical coherence tomography angiography of retinal artery occlusion[J]. Dev Ophthalmol, 2016, 56: 122-131.
[42]
Palejwala NV, Jia Y, Gao SS, et al. Detection of nonexudative choroidal neovascularization in age-related macular degeneration with optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2204-2211.
[43]
Freund KB, Zweifel SA, Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration?[J]. Retina, 2010, 30(9): 1333-1349.
[44]
Inoue M, Jung JJ, Balaratnasingam C, et al. A comparison between optical coherence tomography angiography and fluorescein angiography for the imaging of type 1 neovascularization[J]. Invest Ophth Vis Sci, 2016, 57(9): 314-323.
[45]
El Ameen A, Cohen SY, Semoun O, et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2212-2218.
[46]
Green WR, Enger C. Age-related macular degeneration histopathologic studies[J]. Retina, 2005, 25: 1519-1535.
[47]
Gong J, Yu S, Gong Y, et al. The Diagnostic Accuracy of optical coherence tomography angiography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography[J]. J Ophthalmol, 2016: 7521478.
[48]
Kuehlewein L, Dansingani KK, de Carlo TE, et al. Optical coherence tomography angiography of type 3 neovascularization secondary to age-related macular degeneration[J]. Retina, 2015, 35(11): 2229-2235.
[49]
Lumbroso B, Rispoli M, Savastano MC, et al. Optical coherence tomography angiography study of choroidal neovascularization early response after treatment[J]. Dev Ophthalmol, 2016, 56: 77-85.
[50]
Moult EM, Waheed NK, Novais EA, et al. Swept-source optical coherence tomography angiography reveals choriocapillaris alterations in eyes with nascent geographic atrophy and drusen-associated geographic atrophy[J]. Retina, 2016, 36: 2-11.
[51]
Cheung CMG, Lai TYY, Ruamviboonsuk P, et al. Polypoidal choroidal vasculopathy: definition, pathogenesis, diagnosis, and management[J]. Ophthalmology, 2018, 125(5): 708-724.
[52]
Bo Q, Yan Q, Shen M, et al. Appearance of polypoidal lesions in patients with polypoidal choroidal vasculopathy using swept-source optical coherence tomographic angiography[J]. JAMA Ophthalmol, 2019, 137(6): 642-650.
[53]
Thorell MR, Zhang Q, Huang Y, et al. Swept-source OCT angiography of macular telangiectasia type 2[J]. Ophthalmic Surg Lasers Imaging Retina, 2014, 45(5): 369-380.
[54]
Androudi S, Dastiridou A, Symeonidis C, et al. Retinal vasculitis in rheumatic diseases: an unseen burden[J]. Clin Rheumatol, 2013, 32(1): 7-13.
[55]
Bojikian KD, Chen CL, Wen JC, et al. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography[J]. PloS One, 2016, 11(5): e0154691.
[1] 段浩, 金泽亚, 孙彬, 刘政, 钟宗雨, 何飞. 人股骨头表面微观形貌的表征提取及分析[J]. 中华关节外科杂志(电子版), 2019, 13(01): 58-63,98.
[2] 陈亦阳, 刘佳玉, 万全, 卢志远, 高梓君, 刘佳梦. 半侧颜面短小畸形患儿非病变侧下颌骨形态改变特点[J]. 中华口腔医学研究杂志(电子版), 2022, 16(04): 234-240.
[3] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[4] 陈子扬, 谢立科, 郝晓凤, 张小艳. 抗磷脂抗体相关视网膜血管阻塞的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 367-371.
[5] 安宁, 马雪莹, 白永杰, 王海山. 人工智能在视网膜血管疾病诊断应用中的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 178-182.
[6] 李如意, 李雨雨, 代贺华, 吴幸之, 季瑛, 李根林. Flammer综合征样反应对视网膜色素变性患者眼部供血变化影响的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 146-152.
[7] 段如月, 张天资, 晓琴, 韩永青, 佟玉兰. 光学相干断层扫描血管成像技术在康柏西普对湿性年龄相关性黄斑变性治疗效果评价中的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 140-145.
[8] 牛红蕾, 张东昌, 杨璐. 多模式眼底影像技术在高度近视眼检查中的应用进展[J]. 中华眼科医学杂志(电子版), 2020, 10(02): 123-128.
[9] 叶婷, 李丹杰, 郭雷, 范玮. 健康学龄儿童视网膜血管发育的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(02): 97-102.
[10] 李昕格, 丁旭晨, 刘国丹. 光学相干断层扫描血管成像在糖尿病患者早期黄斑区视网膜微循环评估中的应用[J]. 中华眼科医学杂志(电子版), 2019, 09(03): 187-192.
[11] 张晓娟, 张英泽. 测量人体骨科相关骨骼形态学参数的临床意义[J]. 中华老年骨科与康复电子杂志, 2021, 07(05): 260-263.
[12] 李田利, 张照龙, 孙成建, 刘国平, 谢宜兴, 赵晓龙, 邵黎明, 郑璇, 王长鑫, 徐锐. 基于血流动力学、血脂及外周血炎症标志物的眼段动脉瘤破裂风险相关研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 78-83.
[13] 路明, 杨博, 刘扬, 王慧, 洪文, 黄克林, 刘青. 肛门失禁大动物模型的建立[J]. 中华临床医师杂志(电子版), 2022, 16(04): 356-361.
[14] 杜园园, 吴茅, 李鹏, 林慧君, 吴妮娜. 胸腹腔积液细胞形态及计数联合腺苷脱氨酶检测对结核性浆膜炎的诊断效能[J]. 中华临床医师杂志(电子版), 2020, 14(01): 13-17.
[15] 李冰, 甘海润, 蔡建勋, 龙浩宇, 李露婷. 血管内皮细胞Ddx24基因条件性敲除鼠构建以及对视网膜血管新生的影响[J]. 中华介入放射学电子杂志, 2022, 10(04): 429-435.
阅读次数
全文


摘要