| [1] |
Singh RB, Koh S, Sharma N, et al. Keratoconus[J]. Nat Rev Dis Primers, 2024, 10(1): 81.
|
| [2] |
Morishige N, Shin-Gyou-Uchi R, Azumi H, et al. Quantitative analysis of collagen lamellae in the normal and keratoconic human cornea by second harmonic generation imaging microscopy[J]. Invest Ophthalmol Vis Sci, 2014, 55(12): 8377-8385.
|
| [3] |
White TL, Lewis PN, Young RD, et al. Elastic microfibril distribution in the cornea: Differences between normal and keratoconic stroma[J]. Exp Eye Res, 2017, 159: 40-48.
|
| [4] |
Blackburn BJ, Jenkins MW, Rollins AM, et al. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking[J]. Front Bioeng Biotechnol, 2019, 7: 66.
|
| [5] |
Singh RB, Parmar UPS, Jhanji V. Prevalence and Economic Burden of Keratoconus in the United States[J]. Am J Ophthalmol, 2024, 259: 71-78.
|
| [6] |
Binder PS. Analysis of ectasia after laser in situ keratomileusis: risk factors[J]. J Cataract Refract Surg, 2007, 33(9): 1530-1538.
|
| [7] |
中华医学会眼科学分会角膜病学组. 中国激光角膜屈光手术并发症防治专家共识(2024年)[J]. 中华眼科杂志,2024,60(10):804-812.
|
| [8] |
Kling S, Bekesi N, Dorronsoro C, et al. Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation[J]. PLoS One, 2014, 9(8): e104904.
|
| [9] |
Sinha RA, Kurian M, Matalia H, et al. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo[J]. J Mech Behav Biomed Mater, 2015, 48: 173-182.
|
| [10] |
Montanino A. Modeling with a meshfree approach the cornea-aqueous humor interaction during the air puff test[J]. J Mech Behav Biomed Mater, 2018, 77: 205-216.
|
| [11] |
Qin X, Tian L, Zhang H, et al. Evaluation of corneal elastic modulus based on Corneal Visualization Scheimpflug Technology[J]. Biomed Eng Online, 2019, 18(1): 42.
|
| [12] |
Simonini I, Pandolfi A. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests[J]. J Mech Behav Biomed Mater, 2016, 58: 75-89.
|
| [13] |
Maklad O, Eliasy A, Chen KJ, et al. Simulation of air puff tonometry test using Arbitrary Lagrangian-Eulerian (ALE) deforming mesh for corneal material characterisation[J]. Int J Environ Res Public Health, 2019, 17(1): 54.
|
| [14] |
Shih PJ, Shih HJ, Wang IJ, et al. The extraction and application of antisymmetric characteristics of the cornea during air-puff perturbations[J]. Comput Biol Med, 2024, 168: 107804.
|
| [15] |
Gordon-Shaag A, Millodot M, Ifrah R, et al. Aberrations and topography in normal, keratoconus-suspect, and keratoconic eyes[J]. Optom Vis Sci, 2012, 89(4): 411-418.
|
| [16] |
He X, Sankaridurg P, Naduvilath T, et al. Normative data and percentile curves for axial length and axial length/corneal curvature in Chinese children and adolescents aged 4-18 years[J]. Br J Ophthalmol, 2023, 107(2): 167-175.
|
| [17] |
Yousefi A, Roberts CJ, Reilly MA. The shape of corneal deformation alters air puff-induced loading[J]. Front Bioeng Biotechnol, 2022, 10: 848060.
|
| [18] |
Zhang M, Zhang F, Li Y, et al. Early diagnosis of keratoconus in chinese myopic eyes by combining Corvis ST with Pentacam[J]. Curr Eye Res, 2020, 45(2): 118-123.
|
| [19] |
Anderson JD. Computational fluid dynamics: the basics with applications[M].北京:清华大学出版社,2012.
|
| [20] |
Versteeg HK. An introduction to computational fluid dynamics the finite volume method, 2/E[M]. Chennai:Pearson Education India, 2007.
|
| [21] |
Ariza-Gracia AM, Wu W, Calvo B, et al. Fluid-structure simulation of a general non-contact tonometry. A required complexity[J]. Comput Methods Appl Mech Eng, 2018, 340: 202-215.
|
| [22] |
刘巍. 计算空气动力学并行编程基础[M]. 北京:国防工业出版社,2013.
|
| [23] |
符松,王亮. 湍流模式理论[M]. 北京:科学出版社,2023.
|
| [24] |
Wilcox BDC. Turbulence Modeling For CFD[M]. La Canada, CA: DCW industries, 1998.
|
| [25] |
Zhang D, Zhang H, Tian L, et al. Exploring the biomechanical properties of the human cornea in vivo based on Corvis ST[J]. Front Bioeng Biotechnol, 2021, 9: 771763.
|
| [26] |
包芳军,邓曼丽,王勤美. 角巩膜生物力学性能测量技术的研究进展[J]. 中华眼科杂志,2015,51(11):875-880.
|