| [1] |
GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study[J]. Lancet Glob Health, 2021, 9(2): e144-e160.
|
| [2] |
Gurnani B, Kaur K. Recent advances in refractive surgery: an overview[J]. Clin Ophthalmol, 2024, 18: 2467-2472.
|
| [3] |
Yoon G, Macrae S, Williams DR, et al. Causes of spherical aberration induced by laser refractive surgery[J]. J Cataract Refract Surg, 2005, 31(1): 127-135.
|
| [4] |
Atchison DA, Charman WN. Thomas Young′s contribution to visual optics: the Bakerian Lecture " on the mechanism of the eye" [J]. J Vis, 2010, 10(12): 16.
|
| [5] |
Amano S, Amano Y, Yamagami S, et al. Age-related changes in corneal and ocular higher-order wavefront aberrations[J]. Am J Ophthalmol, 2004, 137(6): 988-992.
|
| [6] |
Al-Somali A, Abouollo HM, Al-Jindan M, et al. Corneal asphericity and its related factors[J]. Med Hypothesis Discov Innov Ophthalmol, 2023, 12(3): 142-149.
|
| [7] |
Jiménez JR, Alarcón A, Anera RG, et al. Hyperopic Q-optimized algorithms: a theoretical study on factors influencing optical quality[J]. Biomed Opt Express, 2017, 8(3): 1405-1414.
|
| [8] |
Gatinel D, Malet J, Hoang-Xuan T, et al. Corneal asphericity change after excimer laser hyperopic surgery: theoretical effects on corneal profiles and corresponding Zernike expansions[J]. Invest Ophthalmol Vis Sci, 2004, 45(5): 1349-1359.
|
| [9] |
周传清,余雷,陆培华,等. 准分子屈光手术中非球面系数对球差以及切削深度的影响[J]. 光学精密工程,2007,15(2):167-172.
|
| [10] |
Cook WH, McKelvie J, Wallace HB, et al. Comparison of higher order wavefront aberrations with four aberrometers[J]. Indian J Ophthalmol, 2019, 67(7): 1030-1035.
|
| [11] |
Anayol MA, Güler E, Yaĝci R, et al. Comparison of central corneal thickness, thinnest corneal thickness, anterior chamber depth, and simulated keratometry using galilei, Pentacam, and Sirius devices[J]. Cornea, 2014, 33(6): 582-586.
|
| [12] |
Bamashmus MA, Hubaish K, Alawad M, et al. Functional outcome and patient satisfaction after laser in situ keratomileusis for correction of myopia and myopic astigmatism[J]. Middle East Afr J Ophthalmol, 2015, 22(1): 108-114.
|
| [13] |
Goldstein JE, Bradley C, Gross AL, et al. The NEI VFQ-25C: Calibrating items in the national eye institute visual function questionnaire-25 to enable comparison of outcome measures[J]. Transl Vis Sci Technol, 2022, 11(5): 10.
|
| [14] |
Queirós A, Villa-Collar C, Gutiérrez AR, et al. Quality of life of myopic subjects with different methods of visual correction using the NEI RQL-42 questionnaire[J]. Eye Contact Lens, 2012, 38(2): 116-121.
|
| [15] |
Kishimoto F, Ohtsuki H. Comparison of VF-14 scores among different ophthalmic surgical interventions[J]. Acta Med Okayama, 2012, 66(2): 101-110.
|
| [16] |
Rocha KM, Vabre L, Harms F, et al. Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology[J]. J Refract Surg, 2007, 23(9): 953-959.
|
| [17] |
Villegas EA, Alcón E, Artal P. Optical quality of the eye in subjects with normal and excellent visual acuity[J]. Invest Ophthalmol Vis Sci, 2008, 49(10): 4688-4696.
|
| [18] |
López-Gil N, Peixoto-de-Matos SC, Thibos LN, et al. Shedding light on night myopia[J]. J Vis, 2012, 12(5): 4.
|
| [19] |
Bottos KM, Leite MT, Aventura-Isidro M, et al. Corneal asphericity and spherical aberration after refractive surgery[J]. J Cataract Refract Surg, 2011, 37(6): 1109-1115.
|
| [20] |
Qazi MA, Roberts CJ, Mahmoud AM, et al. Topographic and biomechanical differences between hyperopic and myopic laser in situ keratomileusis[J]. J Cataract Refract Surg, 2005, 31(1): 48-60.
|
| [21] |
Wang Y, Zheng J, Guo Z, et al. Efficacy and safety of small-incision corneal intrastromal lenticule implantation for hyperopia correction: a systematic review and meta-analysis[J]. Front Med, 2024, 11: 1320235.
|
| [22] |
Kohnen T, Mahmoud K, Bühren J. Comparison of corneal higher-order aberrations induced by myopic and hyperopic LASIK[J]. Ophthalmology, 2005, 112(10): 1692.
|
| [23] |
白燕慧,王卫群. 准分子激光原位角膜磨镶术(LASIK)后球面像差改变的研究[J]. 中华眼外伤职业眼病杂志,2009,31(2):111-113.
|
| [24] |
Wu Y, Huang Y, Wang SH, et al. Comparative study of objective visual quality between FS-LASIK and SMART in myopia[J]. Int J Ophthalmol, 2022, 15(3): 502-509.
|
| [25] |
汪凌,陈俐君,朱叶,等. SMILE,FS-LASIK和TPRK术后高阶像差的变化和比较[J]. 中华眼视光学与视觉科学杂志,2025,27(1):46-55.
|
| [26] |
Zhou C, Li Y, Wang Y, et al. Comparison of visual quality after SMILE correction of low-to-moderate myopia in different optical zones[J]. Int Ophthalmol, 2023, 43(10): 3623-3632.
|
| [27] |
Hamam KM, Gbreel MI, Elsheikh R, et al. Outcome comparison between wavefront-guided and wavefront-optimized photorefractive keratectomy: A systematic review and meta-analysis[J]. Indian J Ophthalmol, 2020, 68(12): 2691-2698.
|
| [28] |
Feng Y, Yu J, Wang Q. Meta-analysis of wavefront-guided vs. wavefront-optimized LASIK for myopia[J]. Optom Vis Sci, 2011, 88(12): 1463-1469.
|
| [29] |
Wallerstein A, Caron-Cantin M, Gauvin M, et al. Primary topography-guided LASIK: refractive, visual, and subjective quality of vision outcomes for astigmatism -2.00 diopters[J]. J Refract Surg, 2019, 35(2): 78-86.
|
| [30] |
Kim J, Choi SH, Lim DH, et al. Topography-guided versus wavefront-optimized laser in situ keratomileusis for myopia: Surgical outcomes[J]. J Cataract Refract Surg, 2019, 45(7): 959-965.
|
| [31] |
Zhang Y, Chen Y. A randomized comparative study of topography-guided versus wavefront-optimized FS-LASIK for correcting myopia and myopic astigmatism[J]. J Refract Surg, 2019, 35(9): 575-582.
|
| [32] |
Jiménez JR, Alarcón A, Anera RG, et al. Q-optimized algorithms: theoretical analysis of factors influencing visual quality after myopic corneal refractive surgery[J]. J Refract Surg, 2016, 32(9): 612-617.
|
| [33] |
Shetty R, Shroff R, Deshpande K, et al. A prospective study to compare visual outcomes between wavefront-optimized and topography-guided ablation profiles in contralateral eyes with myopia[J]. J Refract Surg, 2017, 33(1): 6-10.
|
| [34] |
Zheng H, Song L. Visual quality of Q-value-guided LASIK in the treatment of high myopia[J]. Eye Sci, 2011, 26(4): 208-210.
|
| [35] |
Zhang KP, Fang X, Zhang Y, et al. Comparison of Q-value-guided laser-assisted in situ keratomileusis and standard laser in situ keratomileusis for myopia: A meta-analysis[J]. Medicine (Baltimore), 2020, 99(45): e21563.
|
| [36] |
Martínez CE, Applegate RA, Klyce SD, et al. Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy[J]. Arch Ophthalmol, 1998, 116(8): 1053-1062.
|
| [37] |
Nilagiri VK, Suheimat M, Lambert AJ, et al. Subjective measurement of the Stiles-Crawford effect with different field sizes[J]. Biomed Opt Express, 2021, 12(8): 4969-4981.
|
| [38] |
Zhou X, Qin B, Han T, et al. Long-term observation of higher-order aberrations and microdistortions in bowman′s layer after small incision lenticule extraction for the correcting myopia with spherical equivalent higher than -9.0 diopters[J]. Front Med, 2022, 9: 814810.
|
| [39] |
Wu HK. Astigmatism and LASIK[J]. Curr Opin Ophthalmol, 2002, 13(4): 250-255.
|
| [40] |
Kemraz D, Cheng XY, Shao X, et al. Age-related changes in corneal spherical aberration[J]. J Refract Surg, 2018, 34(11): 760-767.
|
| [41] |
Fang L, Ma W, Wang Y, et al. Theoretical analysis of wave-front aberrations induced from conventional laser refractive surgery in a biomechanical finite element model[J]. Invest Ophthalmol Vis Sci, 2020, 61(5): 34.
|
| [42] |
Arbelaez MC, Arba Mosquera S. The SCHWIND AMARIS total-tech laser as an all-rounder in refractive surgery[J]. Middle East Afr J Ophthalmol, 2009, 16(1): 46-50.
|
| [43] |
Mifflin MD, Mortensen XM, Betts BS, et al. Accuracy of Alcon WaveLight® EX500 optical pachymetry during LASIK[J]. Clin Ophthalmol, 2017, 11: 1513-1517.
|
| [44] |
Petroff DJ, Nasir AA, Moin KA, et al. Evaluating the accuracy of artificial intelligence (AI)-generated illustrations for laser-assisted in situ keratomileusis (LASIK), photorefractive keratectomy (PRK), and small incision lenticule extraction (SMILE)[J]. Cureus, 2024, 16(8): e67747.
|
| [45] |
Moshirfar M, Moin KA, Omidvarnia S, et al. LASIK versus PRK based on increased risk of corneal haze: assessing current decision-making capabilities of six artificial intelligence models in refractive surgery[J]. J Refract Surg, 2024, 40(8): e533-e538.
|
| [46] |
Hira S, Klein Heffel K, Mehmood F, et al. Comparison of refractive surgeries (SMILE, LASIK, and PRK) with and without corneal crosslinking: systematic review and meta-analysis[J]. J Cataract Refract Surg, 2024, 50(5): 523-533.
|
| [47] |
Gong Q, Zhang S, Jiang L, et al. The effect of nerve growth factor on corneal nerve regeneration and dry eye after LASIK[J]. Exp Eye Res, 2021, 203: 108428.
|