[1] |
Guo Y, Liu LJ, Tang P, et al. Outdoor activity and myopia progression in 4-year follow-up of Chinese primary school children: The Beijing children eye study[J]. PLoS One, 2017, 12(4): e0175921.
|
[2] |
Upadhyay A, Beuerman RW. Biological mechanisms of atropine control of myopia[J]. Eye Contact Lens, 2020, 46(3): 129.
|
[3] |
Mader TH, Gibson CR, Pass AF, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight[J]. Ophthalmology, 2011, 118(10): 2058-2069.
|
[4] |
Zhang LF, Hargens AR. Spaceflight-induced intracranial hyper-tension and visual impairment: pathophysiology and counter-measures[J]. Physiol Rev, 2018, 98(1): 59-87.
|
[5] |
相璐,姜思宇,沈玺.近视的发病机制及防控研究进展[J]. 眼科新进展,2021,41(5):488-494.
|
[6] |
吕佳,王林洪. 调节滞后与青少年近视进展相关性的研究[J]. 临床眼科杂志,2015,23(4):363-364.
|
[7] |
李娜,王剑锋. 青少年近视矫治方法研究进展[J]. 临床眼科杂志,2016,24(1):91-94.
|
[8] |
Kaphle D, Atchison DA, Schmid KL. Multifocal spectacles in childhood myopia: Are treatment effects maintained? A systematic review and meta-analysis[J]. Surv Ophthalmol, 2020, 65(2): 239-249.
|
[9] |
伍岚. 凸透三棱镜结合视觉生理性眼操训练对青少年近视的预防控制效果研究[J]. 中国现代药物应用,2018,12(16):28-30.
|
[10] |
韦丽娇,谢祥勇,何碧华,等. 光学矫正青少年近视眼防控方法的研究进展[J]. 中华眼科医学杂志,2020,10(5):311-315.
|
[11] |
刘长辉,魏栋栋,梁玲. 配戴减少周边远视离焦眼镜对近视儿童眼部参数的影响[J]. 国际眼科杂志,2019,19(5):878-880.
|
[12] |
甄毅,魏士飞,高杰,等. 降低球镜验光片间隔在提升红绿平衡试验实现率及视觉质量上的效果[J]. 眼科,2021,30(3):184-188.
|
[13] |
Logan NS, Wolffsohn JS. Role of un-correction, under-correction and over-correction of myopia as a strategy for slowing myopic progression[J]. Clin Exp Optom, 2020, 103(2): 133-137.
|
[14] |
Smith IIIEL. Optical treatment strategies to slow myopia progression: effects of the visual extent of the optical treatment zone[J]. Exp Eye Res, 2013, 114: 77-88.
|
[15] |
师丹娜,丁瞳,邱伟强. 治疗性角膜接触镜的发展及临床应用[J]. 国际眼科杂志,2018,18(2):271-274.
|
[16] |
Huang JH, Wen DZ, Wang QM, et al. Efficacy comparison of 16 interventions formyopia control in children[ J]. Ophthalmology, 2016, 123(4): 697-708.
|
[17] |
Lingham G, Mackey DA, Lucas R, et al. How does spending time outdoors protect against myopia? A review[J]. Brit J Ophthalmol, 2020, 104(5): 593-599.
|
[18] |
Muralidharan AR, Low SWY, Lee YC, et al. Recovery from form-deprivation myopia in chicks is dependent upon the fullness and correlated color temperature of the light spectrum[J]. Invest Ophth Vis Sci, 2022, 63(2): 16.
|
[19] |
Muralidharan AR, Lança C, Biswas S, et al. Light and myopia: from epidemiological studies to neurobiological mechanisms[J]. Ther Adv Ophthalmol, 2021, 13: 1-45.
|
[20] |
Dolgin E. The myopia boom[J]. Nature, 2015, 519(7543): 276-278.
|
[21] |
Young FA, Baldwin WR, Box RA, et al. The transmission of refractive error within eskimo families[J]. Am J Optom, 1969, 46: 676-85.
|
[22] |
Hu Y, Zhao F, Ding X, et al. Rates of myopia development in young Chinese schoolchildren during the outbreak of COVID-19[J]. JAMA Ophthalmol, 2021, 139(10): 1115-1121.
|
[23] |
Huang PC, Hsiao YC, Tsai CY, et al. Protective behaviours of near work and time outdoors in myopia prevalence and progression in myopic children: a 2-year prospective population study[J]. Brit J Ophthalmol, 2020, 104(7): 956-961.
|
[24] |
Xiong S, Sankaridurg P, Naduvilath T, et al. Time spent in outdoor activities in relation to myopiaprevention and control: a meta-analysis and systematic review[J]. Actaophthalmologica, 2017, 95(6): 551-566.
|
[25] |
Bedrossian RH. The effect of atropine on myopia[J]. Ophthalmology, 1979, 86(5): 713-717.
|
[26] |
Shih YF, Chen CH, Chou AIC, et al. Effects of different concentrations of atropine on controlling myopia in myopic children[J]. J Ocul Pharmacol Th, 1999, 15(1): 85-90.
|
[27] |
Zhu Q, Tang Y, Guo L, et al. Efficacy and safety of 1% atropine on retardation of moderate myopia progression in Chinese school children[J]. Int J Med Sci, 2020, 17(2): 176.
|
[28] |
Chua WH, Balakrishnan V, Chan YH, et al. Atropine for the treatment of childhood myopia[J]. Ophthalmology, 2006, 113(12): 2285-2291.
|
[29] |
Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops[J]. Ophthalmology, 2016, 123(2): 391-399.
|
[30] |
Sacchi M, Serafino M, Villani E, et al. Efficacy of atropine 0.01% for the treatment of childhood myopia in European patients[J]. Acta ophthalmologica, 2019, 97(8): e1136-e1140.
|
[31] |
Chia A, Chua WH, Wen L, et al. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5%[J]. Am J Ophthalmol, 2014, 157(2): 451-457.
|
[32] |
Dong F, Zhi Z, Pan M, et al. Inhibition of experimental myopia by a dopamine agonist: different effectiveness between form deprivation and hyperopic defocus in guinea pigs[J]. Mol Vis, 2011, 17: 2824-2834.
|
[33] |
Seltner RLP, Stell WK. The effect of vasoactive intestinal peptide on development of form deprivation myopia in the chick: a pharmacological and immunocytochemical study[J]. Vision Res, 1995, 35(9): 1265-1270.
|
[34] |
尹靓瑶. 外源性褪黑素对豚鼠形觉剥夺性近视中褪黑素受体、iNOS、c-fos表达的影响[D]. 郑州:郑州大学,2011.
|
[35] |
Yu M, Liu W, Wang B, et al. Shortwavelength (blue) light is protective for lens-induced myopia in guinea pigs potentially through a retinoic acid-related mechanism[J]. Invest Ophth Vis Sci, 2021, 62(1): 21.
|
[36] |
Singh H, Sahajpal NS, Singh H, et al. Pre-clinical and cellular toxicity evaluation of 7-methylxanthine: an investigational drug for the treatment of myopia[J]. Drug Chem Toxicol, 2021, 44(6): 575-584.
|
[37] |
Singh H, Singh H, Sahajpal NS, et al. Sub-chronic and chronic toxicity evaluation of 7-methylxanthine: a new molecule for the treatment of myopia[J]. Drug Chem Toxicol, 2020: 1-12.
|
[38] |
张延凯,刘艳丽,杨兰娜. 低浓度阿托品联合角膜塑形镜对青少年中低度近视控制治疗效果分析[J]. 中国处方药,2021,19(11):121-124.
|
[39] |
黄涛. 角膜塑形镜联合低浓度阿托品治疗青少年近视的临床疗效[J]. 临床合理用药杂志,2021,14(27):133-135.
|
[40] |
Sánchez-González JM, de-Hita-Cantalejo C, Baustita-Llamas MJ, et al. The combined effect of low-dose atropine with orthokeratology in pediatric myopia control: review of the current treatment status for myopia[J]. J Clin Med, 2020, 9(8): 2371.
|
[41] |
Kinoshita N, Konno Y, Hamada N, et al. Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia: first year results[J]. Jpn J Ophthalmol, 2018, 62(5): 544-553.
|
[42] |
Liu H, Schaeffel F, Trier K, et al. Effects of 7-methylxanthine on deprivation myopia and retinal dopamine release in chickens[J]. Ophthalmic Res, 2020, 63(3): 347-357.
|
[43] |
Sánchez-González JM, de-Hita-Cantalejo C, Baustita-Llamas MJ, et al. The combined effect of low-dose atropine with ortho-keratology in pediatric myopia control: review of the current treatment status for myopia[J]. J Clin Med, 2020, 9(8): 2371.
|
[44] |
Hirasawa H, Contini M, Raviola E. Extrasynaptic release of GABA and dopamine by retinal dopaminergic neurons[J]. Philos TR Soc B, 2015, 370(1672): 20140186.
|
[45] |
Zhang S, Yang J, Reinach PS, et al. Dopamine receptor subtypes mediate opposing effects on form deprivation myopia in pigmented guinea pigs[J]. Invest Ophth Vis Sci, 2018, 59(11): 4441-4448.
|
[46] |
Chakraborty R, Ostrin LA, Nickla DL, et al. Circadian rhythms, refractive development, and myopia[J]. Ophthal Physl Opt, 2018, 38(3): 217-245.
|
[47] |
Nickla DL, Jordan K, Yang J, et al. Effects of time-of-day on inhibition of lens-induced myopia by quinpirole, pirenzepine and atropine in chicks[J]. Exp Eye Res, 2019, 181: 5-14.
|
[48] |
Ward AH, Siegwart JT, Frost MR, et al. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews[J]. Visual Neurosci, 2017, 34: E003.
|
[49] |
孟博,李仕明,詹思延,等. 近视眼巩膜重塑相关基因多态性研究进展[J]. 中华眼科杂志,2016,52(11):876-880.
|
[50] |
宫玉波,许永杰,赵宏伟,等. 14 d尾吊模拟失重大鼠眼底血流动力学及眼轴变化研究[J]. 航天医学与医学工程,2019,32(5):401-405.
|
[51] |
宫玉波,赵宏伟,宋飞龙,等. 微重力环境下大鼠眼底血流动力学及视网膜、脉络膜厚度的变化[J]. 解放军医学杂志,2021,46(1):7-10.
|
[52] |
Shinojima A, Iwasaki K, Aoki K, et al. Subfoveal choroidal thickness and foveal retinal thickness during head-down tilt[J]. Aviat Space Environ Med, 2012, 83(4): 388-393.
|
[53] |
Taibbi G, Cromwell RL, Zanello SB, et al. Ocular outcomes comparison between 14- and 70-day head-down-tilt bed rest[J]. Invest Ophthalmol Vis Sci, 2016, 57(2): 495-501.
|
[54] |
Chatziravdeli V, Katsaras GN, Lambrou GI. Gene expression in osteoblasts and osteoclasts under microgravity conditions: a systematic review[J]. Curr Genomics, 2019, 20(3): 184-198.
|
[55] |
许欣,徐志明,刘国印,等. 头低位卧床对眼内压、近视力、视野的影响及其中药防护[J]. 航天医学与医学工程,2002,15(6):419-422.
|
[56] |
Pärssinen O, Kauppinen M. Associations of reading posture, gaze angle and reading distance with myopia andmyopic progression[J]. Acta Ophthalmol, 2016, 94(8): 775-779.
|