[1] |
Darian-Smith E, Howie AR, Allen PL, et al. Tasmanian macular hole study: whole population-based incidence of full thickness macular hole[J]. Clin Experiment Ophthalmol, 2016, 44(9): 812-816.
|
[2] |
Mc Cannel CA, Ensminger JL, Diehl NN, et al. Population-based Incidence of Macular Holes[J]. Ophthalmology, 2009, 116(7): 1366-1369.
|
[3] |
Spaide RF. Macular hole hypotheses[J]. Am J Ophthalmol, 2005, 139(1): 149-151.
|
[4] |
Cheng L, Freeman WR, Ozerdem U, et al. Prevalence, correlates, and natural history of epiretinal membranes surrounding idiopathic macular holes[J]. Ophthalmology, 2000, 107(5): 853-859.
|
[5] |
Johnson MW. Posterior Vitreous Detachment: Evolution and Complications of Its Early Stages[J]. Am J Ophthalmol, 2010, 149(3): 371-382.
|
[6] |
Gass JDM. Müller Cell Cone, an Overlooked Part of the Anatomy of the Fovea Centralis: Hypotheses Concerning Its Role in the Pathogenesis of Macular Hole and Foveomacular Retinoschisis[J]. Arch Ophthalmol, 1999, 117(6): 821-823.
|
[7] |
Bu SC, Kuijer R, Van Der Worp RJ, et al. Glial cells and collagens in epiretinal membranes associated with idiopathic macular holes[J]. Retina, 2014, 34(5): 897-906.
|
[8] |
Gass JDM. Idiopathic Senile Macular Hole: Its Early Stages and Pathogenesis[J]. Arch Ophthalmol, 1988, 106(5): 629-639.
|
[9] |
Inoue M, Arakawa A, Yamane S, et al. Long-term Outcome of Macular Microstructure Assessed by Optical Coherence Tomography in Eyes With Spontaneous Resolution of Macular Hole[J]. Am J Ophthalmol, 2012, 153(4): 687-691.
|
[10] |
Mori K, Kanno J, Gehlbach PL, et al. Montage Images of Spectral-Domain Optical Coherence Tomography in Eyes with Idiopathic Macular Holes[J]. Ophthalmology, 2012, 119(12): 2600-2608.
|
[11] |
Wilczyński T, Heinke A, Niedzielska-Krycia A, et al. Optical coherence tomography angiography features in patients with idiopathic full-thickness macular hole, before and after surgical treatment[J]. Clin Interv Aging, 2019, 14: 505-514.
|
[12] |
Sun Z, Gan D, Jiang C, et al. Effect of preoperative retinal sensitivity and fixation on long-term prognosis for idiopathic macular holes[J]. Graefe′s Arch Clin Exp Ophthalmol, 2012, 250(11): 1587-1596.
|
[13] |
Syed YY, Dhillon S. Ocriplasmin: A Review of Its Use in Patients with Symptomatic Vitreomacular Adhesion[J]. Drugs, 2013, 73(14): 1617-1625.
|
[14] |
Steel DHW, Parkes C, Papastavrou VT, et al. Predicting macular hole closure with ocriplasmin based on spectral domain optical coherence tomography[J]. Eye, 2016, 30(5): 740-745.
|
[15] |
Juncal VR, Chow DR, Vilà N, et al. Ocriplasmin versus vitrectomy for the treatment of macular holes[J]. Can J Ophthalmol, 2018, 53(5): 441-446.
|
[16] |
Tadayoni R, Holz FG, Zech C, et al. Assessment of anatomical and functional outcomes with ocriplasmin treatment in patients with vitreomacular traction with or without macular holes: Results of OVIID-1 Trial[J]. Retina, 2019, 39(12): 2341-2352.
|
[17] |
Dugel PU, Tolentino M, Feiner L, et al. Results of the 2-Year Ocriplasmin for Treatment for Symptomatic Vitreomacular Adhesion Including Macular Hole (OASIS) Randomized Trial[J]. Ophthalmology, 2016, 123(10): 2232-2247.
|
[18] |
Hikichi T, Kosaka S, Takami K, et al. 23-Gauge and 20-Gauge Vitrectomy with Air Tamponade with Combined Phacoemulsification for Idiopathic Macular Hole: A Single-Surgeon Study[J]. Am J Ophthalmol, 2011, 152(1): 114-121.
|
[19] |
Krishnan R, Tossounis C, Yang YF. 20-gauge and 23-gauge phacovitrectomy for idiopathic macular holes: comparison of complications and long-term outcomes[J]. Eye, 2012, 27(1): 72-77.
|
[20] |
Scholz P, Müther PS, Schiller P, et al. A Randomized Controlled Clinical Trial Comparing 20 Gauge and 23 Gauge Vitrectomy for Patients with Macular Hole or Macular Pucker[J]. Adv Ther, 2018, 35(12): 2152-2166.
|
[21] |
Wickham L, Bunce C, Kwan AS, et al. A pilot randomised controlled trial comparing the post-operative pain experience following vitrectomy with a 20-gauge system and the 25-gauge transconjunctival system[J]. Br J Ophthalmol, 2010, 94(1): 36-40.
|
[22] |
Dihowm F, MacCumber M. Comparison of outcomes between 20, 23 and 25 gauge vitrectomy for idiopathic macular hole[J]. Int J Retin Vitr, 2015, 1(1): 1-9.
|
[23] |
Yoneda K, Morikawa K, Oshima Y, et al. Surgical outcomes of 27-gauge vitrectomy for a consecutive series of 163 eyes with various vitreous diseases[J]. Retina, 2017, 37(11): 2130-2137.
|
[24] |
Cornish KS, Lois N, Scott N, et al. Vitrectomy with internal limiting membrane (ILM) peeling versus vitrectomy with no peeling for idiopathic full-thickness macular hole (FTMH) [J]. Cochrane Database Syst Rev, 2013, (6): CD009306.
|
[25] |
Modi A, Giridhar A, Gopalakrishnan M. Comparative analysis of outcomes with variable diameter internal limiting membrane peeling in surgery for idiopathic macular hole repair[J]. Retina, 2017, 37(2): 265-273.
|
[26] |
Modi A, Giridhar A, Gopalakrishnan M. Spectral domain optical coherence tomography-based microstructural analysis of retinal architecture post internal limiting membrane peeling for surgery of idiopathic macular hole repair[J]. Retina, 2017, 37(2): 291-298.
|
[27] |
Imamura Y, Ishida M. Retinal thinning after internal limiting membrane peeling for idiopathic macular hole[J]. Japanese J Ophthalmol, 2018, 62(2): 158-162.
|
[28] |
Yu Y, Liang X, Wang Z, et al. Internal limiting membrane peeling and air tamponade for stage iii and stage iv idiopathic macular hole[J]. Retina, 2020, 40(1): 66-74.
|
[29] |
Tadayoni R, Gaudric A, Haouchine B, et al. Relationship between macular hole size and the potential benefit of internal limiting membrane peeling[J]. Br J Ophthalmol, 2006, 90(10): 1239-1241.
|
[30] |
Yan YJ, Sun XQ, Chen Y, et al. Long-term observation of morphological changes of the inner retinal after internal limiting membrane peeling in macular hole surgery[J]. Zhonghua Yan Ke Za Zhi, 2019, 55(10): 747-756.
|
[31] |
Michalewska Z, Michalewski J, Adelman RA, et al. Inverted Internal Limiting Membrane Flap Technique for Large Macular Holes[J]. Ophthalmology, 2010, 117(10): 2018-2025.
|
[32] |
Rizzo S, Tartaro R, Barca F, et al. Internal limiting membrane peeling versus inverted flap technique for treatment of full-thickness macular holes: a comparative study in a large series of patients[J]. Retina, 2018, 38: S73-S78.
|
[33] |
Baumann C, Kaye S, Iannetta D, et al. Effect of inverted internal limiting membrane flap on closure rate, postoperative visual acuity, and restoration of outer retinal layers in primary idiopathic macular hole surgery[J]. Retina, 2020, 40(10): 1955-1963.
|
[34] |
Narayanan R, Singh SR, Taylor S, et al. Surgical outcomes after inverted internal limiting membrane flap versus conventional peeling for very large macular holes[J]. Retina, 2019, 39(8): 1465-1469.
|
[35] |
Shen Y, Lin X, Zhang L, et al. Comparative efficacy evaluation of inverted internal limiting membrane flap technique and internal limiting membrane peeling in large macular holes: a systematic review and meta-analysis[J]. BMC Ophthalmol, 2020, 20(1): 1-10.
|
[36] |
Morizane Y, Shiraga F, Kimura S, et al. Autologous Transplantation of the Internal Limiting Membrane for Refractory Macular Holes[J]. Am J Ophthalmol, 2014, 157(4): 861-869.
|
[37] |
De Novelli FJ, Preti RC, Monteiro MLR, et al. Autologous Internal Limiting Membrane Fragment Transplantation for Large, Chronic, and Refractory Macular Holes[J]. Ophthalmic Res, 2016, 55(1): 45-52.
|
[38] |
Dai Y, Dong F, Zhang X, et al. Internal limiting membrane transplantation for unclosed and large macular holes[J]. Graefe′s Arch Clin Exp Ophthalmol, 2016, 254(11): 2095-2099.
|
[39] |
Lyu WJ, Ji LB, Xiao Y, et al. Treatment of refractory giant macular hole by vitrectomy with internal limiting membrane transplantation and autologous blood[J]. Int J Ophthalmol, 2018, 11(5): 114-118.
|
[40] |
Peng J, Chen C, Jin H, et al. Autologous lens capsular flap transplantation combined with autologous blood application in the management of refractory macular hole[J]. Retina, 2018, 38(11): 2177-2183.
|
[41] |
Chang YC, Liu PK, Kao TE, et al. Management of refractory large macular hole with autologous neurosensory retinal free flap transplantation[J]. Retina, 2020, 40(11): 2134-2139.
|
[42] |
Zhang L, Li X, Yang X, et al. Internal limiting membrane insertion technique combined with nerve growth factor injection for large macular hole[J]. BMC Ophthalmol, 2019, 19(1): 1-8.
|
[43] |
Degenhardt V, Busch C, Jochmann C, et al. Prognostic Factors in Patients with Persistent Full-Thickness Idiopathic Macular Holes Treated with Re-Vitrectomy with Autologous Platelet Concentrate[J]. Ophthalmologica, 2019, 242(4): 214-221.
|
[44] |
Chhablani J, Khodani M, Hussein A, et al. Role of macular hole angle in macular hole closure[J]. Br J Ophthalmol, 2015, 99(12): 1634-1638.
|
[45] |
Wakely L, Rahman R, Stephenson J. A comparison of several methods of macular hole measurement using optical coherence tomography, and their value in predicting anatomical and visual outcomes[J]. Br J Ophthalmol, 2012, 96(7): 1003-1007.
|
[46] |
Kusuhara S, Teraoka Escaño MF, Fujii S, et al. Prediction of postoperative visual outcome based on hole configuration by optical coherence tomography in eyes with idiopathic macular holes[J]. Am J Ophthalmol, 2004, 138(5): 709-716.
|
[47] |
Ullrich S, Haritoglou C, Gass C, et al. Macular hole size as a prognostic factor in macular hole surgery[J]. Br J Ophthalmol, 2002, 86(4): 390-393.
|
[48] |
Liu P, Sun Y, Dong C, et al. A new method to predict anatomical outcome after idiopathic macular hole surgery[J]. Graefe′s Arch Clin Exp Ophthalmol, 2016, 254(4): 683-688.
|
[49] |
Yao Y, Qu J, Dong C, et al. The impact of extent of internal limiting membrane peeling on anatomical outcomes of macular hole surgery: results of a 54-week randomized clinical trial[J]. Acta Ophthalmol, 2019, 97(3): 303-312.
|
[50] |
Weinberger AW, Kirchhof B, Mazinani BE, et al. Persistent indocyanine green (ICG) fluorescence 6 weeks after intraocular ICG administration for macular hole surgery[J]. Graefe′s Arch Clin Exp Ophthalmol, 2001, 239(5): 388-390.
|
[51] |
Shukla D, Kalliath J, Neelakantan N, et al. A comparison of brilliant blue g, trypan blue, and indocyanine green dyes to assist internal limiting membrane peeling during macular hole surgery[J]. Retina, 2011, 31(10): 2021-2025.
|
[52] |
Totan Y, Güler E, Güraĝaç FB, et al. Brilliant blue G assisted macular surgery: the effect of air infusion on contrast recognisability in internal limiting membrane peeling[J]. Br J Ophthalmol, 2015, 99(1): 75-80.
|
[53] |
Morescalchi F, Costagliola C, Gambicorti E, et al. Controversies over the role of internal limiting membrane peeling during vitrectomy in macular hole surgery[J]. Surv Ophthalmol, 2017, 62(1): 58-69.
|
[54] |
Ghosh B, Arora S, Goel N, et al. Comparative evaluation of sequential intraoperative use of whole blood followed by brilliant blue versus conventional brilliant blue staining of internal limiting membrane in macular hole surgery[J]. Retina, 2016, 36(8): 1463-1468.
|
[55] |
Lai JC, Stinnett SS, McCuen BW. Comparison of silicone oil versus gas tamponade in the treatment of idiopathic full-thickness macular hole[J]. Ophthalmology, 2003, 110(6): 1170-1174.
|
[56] |
He F, Zheng L, Dong FT. Comparative study of the effects of sterilized air and perfluoropropane gas tamponades on recovery after idiopathic full-thickness macular hole surgery[J]. Zhonghua Yan Ke Za Zhi, 2017, 53(5): 327-331.
|
[57] |
Modi A, Giridhar A, Gopalakrishnan M. Sulfurhexafluoride (SF6) versus perfluoropropane (C3F8) gas as tamponade in macular hole surgery[J]. Retina, 2017, 37(2): 283-290.
|
[58] |
Essex RW, Kingston ZS, Moreno-Betancur M, et al. The Effect of Postoperative Face-Down Positioning and of Long- versus Short-Acting Gas in Macular Hole Surgery: Results of a Registry-Based Study[J]. Ophthalmology, 2016, 123(5): 1129-1136.
|
[59] |
Forsaa VA, Raeder S, Hashemi LT, et al. Short-term postoperative non-supine positioning versus strict face-down positioning in macular hole surgery[J]. Acta Ophthalmol, 2013, 91(6): 547-551.
|
[60] |
Elborgy ES, Starr MR, Kotowski JG, et al. No face-down positioning surgery for the repair of chronic idiopathic macular holes[J]. Retina, 2020, 40(2): 282-289.
|
[61] |
Guillaubey A, Malvitte L, Lafontaine PO, et al. Comparison of Face-Down and Seated Position After Idiopathic Macular Hole Surgery: A Randomized Clinical Trial[J]. Am J Ophthalmol, 2008, 146(1): 128-134.
|
[62] |
Hu Z, Xie P, Ding Y, et al. Face-down or no face-down posturing following macular hole surgery: a meta-analysis[J]. Acta Ophthalmol, 2016, 94(4): 326-333.
|
[63] |
Kaiser PK, Kampik A, Kuppermann BD, et al. Safety profile of ocriplasmin for the pharmacologic treatment of symptomatic vitreomacular adhesion/traction[J]. Retina, 2015, 35(6): 1111-1127.
|
[64] |
Schatz A, Seuthe AM, Januschowski K. Effect of Ocriplasmin on objectively assessed retinal function after treatment of vitreomacular diseases[J]. Acta Ophthalmol, 2019, 97(5): e700-e705.
|
[65] |
Fujiwara N, Tomita G, Yagi F. Incidence and Risk Factors of Iatrogenic Retinal Breaks: 20-Gauge versus 25-Gauge Vitrectomy for Idiopathic Macular Hole Repair[J]. J Ophthalmol, 2020, 5085180: 1-4.
|
[66] |
Yu Y, Qi B, Liang X, et al. Intraoperative iatrogenic retinal breaks in 23-gauge vitrectomy for stage 3 and stage 4 idiopathic macular holes[J]. Br J Ophthalmol, 2021, 105(1): 93-96.
|
[67] |
Shields RA, Ludwig CA, Powers MA, et al. Postoperative adverse events, interventions, and the utility of routine follow-up after 23, 25, and 27 gauge pars plana vitrectomy[J]. Asia-Pacific J Ophthalmol, 2019, 8(1): 1-7.
|
[68] |
Goto K, Iwase T, Akahori T, et al. Choroidal and retinal displacements after vitrectomy with internal limiting membrane peeling in eyes with idiopathic macular hole[J]. Sci Reports, 2019, 9(1): 1-10.
|
[69] |
Baba T, Kakisu M, Nizawa T, et al. Regional densities of retinal capillaries and retinal sensitivities after macular hole surgery with internal limiting membrane peeling[J]. Retina, 2020, 40(8): 1585-1591.
|