切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 188 -192. doi: 10.3877/cma.j.issn.2095-2007.2025.03.011

综述

糖尿病性黄斑水肿发病机制与治疗研究的新进展
张帆, 王海波, 袁琳慧, 靳蕾, 刘新()   
  1. 116033 大连理工大学附属第三人民医院眼科
  • 收稿日期:2025-05-06 出版日期:2025-06-28
  • 通信作者: 刘新
  • 基金资助:
    辽宁省自然基金资助计划项目(2019-MS-068); 大连市第三人民医院科研启动专项基金项目(2021-064-004)

Research progress on the pathogenesis and treatment of diabetic macular edema

Fan Zhang, Haibo Wang, Linhui Yuan, Lei Jin, Xin Liu()   

  1. Department of Ophthalmology, Dalian Third People′s Hospital Affiliated to Dalian University of Technology, Dalian 116033, China
  • Received:2025-05-06 Published:2025-06-28
  • Corresponding author: Xin Liu
引用本文:

张帆, 王海波, 袁琳慧, 靳蕾, 刘新. 糖尿病性黄斑水肿发病机制与治疗研究的新进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 188-192.

Fan Zhang, Haibo Wang, Linhui Yuan, Lei Jin, Xin Liu. Research progress on the pathogenesis and treatment of diabetic macular edema[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2025, 15(03): 188-192.

糖尿病性黄斑水肿(DME)是糖尿病视网膜病变的严重并发症,其发病率随糖尿病患病率升高而递增,已成为导致视力丧失的重要原因。玻璃体腔抗血管内皮生长因子(VEGF)药物注射和激光光凝等传统治疗对部分难治性患者的疗效有限。近年来,DME治疗在机制研究和临床实践中取得显著进展。通过双靶点抑制的新型抗VEGF药物在改善视网膜形态方面展现出明显优势,该疗法注射间隔时间长,并发症少;激素治疗为难治性患者提供了新选择,但需警惕眼压升高和白内障等并发症的发生。抗VEGF联合地塞米松、激光光凝及口服药物的综合疗法可减少注射频率,发挥协同效应。玻璃体切除联合内界膜剥除术对难治性DME的解剖学改善存在争议,但在解除机械牵拉和清除炎症因子方面具有潜力,联合视网膜下注射技术可进一步清除硬性渗出。人工智能辅助预测抗VEGF治疗反应和基因治疗等新兴技术为个性化诊疗和长效干预带来了希望。尽管如此,DME发病机制的复杂性仍需深入探索,未来需聚焦长效药物研发、精准治疗策略及多中心临床验证,以优化患者的视力预后。

Diabetic macular edema (DME), a severe complication of diabetic retinopathy, exhibits an increasing occurrence rate in parallel with the rising prevalence of diabetes mellitus. It has emerged as a leading cause of vision loss, imposing substantial economic burdens on society and families. It has demonstrated that the conventional treatments, such as intravitreal anti-vascular endothelial growth factor (VEGF) injections and laser photocoagulation, had limited efficacy in certain refractory patient populations. In recent years, significant advancements have been achieved in both mechanistic studies and clinical management of DME: novel anti-VEGF agents featuring dual-target inhibition exhibit superior efficacy in improving retinal morphology with longer intervals of injection and lower complications. Corticosteroid therapy offers a viable alternative for refractory cases, though clinicians must remain vigilant against complications such as elevated intraocular pressure and cataract formation. Combination therapies, integrating anti-VEGF agents with dexamethasone, laser photocoagulation, or adjunctive medications, reduce injection frequency and exert synergistic therapeutic effects. Vitrectomy with internal limiting membrane peeling remains controversial regarding anatomical improvement in refractory DME; however, it holds potential in alleviating mechanical traction and clearing inflammatory mediators. Further refinement via subretinal injection techniques may enhance the clearance of hard exudates. Emerging technologies, including artificial intelligence assisted prediction of anti-VEGF response and gene therapy, present promising avenues for personalized treatment and sustained intervention. Despite these advances, the pathophysiology of DME remains incompletely elucidated. Future research should prioritize the development of long-acting therapeutics, precision medicine strategies, and multicenter clinical validation to optimize visual outcomes for patients.

图2 增殖性糖尿病视网膜病变者伴黄斑水肿患者抗血管内皮生长因子治疗无效后行玻璃体切割联合内界膜剥除手术前后的光学相干断层扫描图像 图2A示患者治疗前光学相干断层扫描图像,可见黄斑前膜牵拉黄斑区,黄斑囊样水肿伴局浅视网膜脱离;图2B示患者术后光学相干断层扫描图像,可见黄斑区牵拉解除,黄斑区形态已基本恢复,残余轻微黄斑囊样水肿
[1]
国际糖尿病联盟. IDF糖尿病地图集(第10版)[M]. 比利时布鲁塞尔:国际糖尿病联盟,2021.
[2]
Jiang Y, He W, Qi S. Evaluating the efficacy of subthreshold micropulse laser combined with anti-VEGF drugs in the treatment of diabetic macular edema: a systematic review and meta-analysis[J]. Front Endocrinol (Lausanne), 2025, 16: 1553311.
[3]
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy[J]. N Engl J Med, 2012, 366(13): 1227-1239.
[4]
Sanz-González SM, García-Medina JJ, Zanón-Moreno V, et al. On behalf of the valencia study group on diabetic retinopathy vsdr report number. clinical and molecular-genetic insights into the role of oxidative stress in diabetic retinopathy: antioxidant strategies and future avenues[J]. Antioxidants (Basel), 2020, 9(11): 1101.
[5]
Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy[J]. Front Immunol, 2020, 11: 583687.
[6]
Wang ZY, Yang FY, Cai SW, et al. Plasma metabolomic profiling of diabetic macular edema[J]. Sci Rep, 2025, 15(1): 10012.
[7]
Petkova-Parlapanska K, Draganova V, Georgieva E, et al. Systematic inflammation and oxidative stress elevation in diabetic retinopathy and diabetic patients with macular edema[J]. Int J Mol Sci, 2025, 26(8): 3810.
[8]
Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives[J]. Rev Endocr Metab Disord, 2008, 9(4): 315-327.
[9]
Odio-Herrera M, Orozco-Loaiza G, Wu L. Gene therapy in diabetic retinopathy and diabetic macular edema: an update[J]. J Clin Med, 2025, 14(9): 3205.
[10]
Wu L, Acón D, Wu A, et al. Vascular endothelial growth factor inhibition and proliferative diabetic retinopathy, a changing treatment paradigm[J]? Taiwan J Ophthalmol, 2019, 9(4): 216-223.
[11]
Andrés-Blasco I, Gallego-Martínez A, Machado X, et al. Oxidative stress, inflammatory, angiogenic, and apoptotic molecules in proliferative diabetic retinopathy and diabetic macular edema patients[J]. Int J Mol Sci, 2023, 24(9): 8227.
[12]
Takamura Y, Yamada Y, Inatani M. Role of microaneurysms in the pathogenesis and therapy of diabetic macular edema: A Descriptive Review. Medicina (Kaunas) [J]. 2023, 59(3): 435.
[13]
Lees JR, Cross AH. A little stress is good: IFN-gamma, demyelination, and multiple sclerosis[J]. J Clin Invest, 2007, 117(2): 297-299.
[14]
Batsos G, Christodoulou E, Christou EE, et al.Vitreous inflammatory and angiogenic factors on patients with proliferative diabetic retinopathy or diabetic macular edema: the role of Lipocalin2[J]. BMC Ophthalmol, 2022, 22(1): 496.
[15]
Noma H, Yasuda K, Shimura M. Involvement of cytokines in the pathogenesis of diabetic macular edema[J]. Int J Mol Sci, 2021, 22(7): 3427.
[16]
Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol[J]. 2011, 21 (6): S3-S9.
[17]
Li W, Shen X, Wang Y, et al.The effect of Shengpuhuang-tang on retinal inflammation in streptozotocin-induced diabetic rats by NF-κB pathway[J]. J Ethnopharmacol, 2020, 247:112275.
[18]
Lai D, Wu Y, Shao C, et al. The role of Müller cells in diabetic macular edema[J]. Invest Ophthalmol Vis Sci, 2023, 64(10): 8.
[19]
Malepati A, Grant MB. The role and diagnostic potential of insulin-like growth factor 1 in diabetic retinopathy and diabetic macular edema[J]. Int J Mol Sci, 2025, 26(9): 3961.
[20]
Azzolini C, Congiu T, Donati S, et al. Multilayer microstructure of idiopathic epiretinal macular membranes[J]. Eur J Ophthalmol, 2017, 27(6): 762-768.
[21]
Ulrich JN. Pars plana vitrectomy with internal limiting membrane peeling for nontractional diabetic macular edema[J]. Open Ophthalmol J, 2017, 11: 5-10.
[22]
Guo J, Bi X, Chen SN, et al. Efficacy of internal limiting membrane peeling for diabetic macular edema after preoperative anti-vascular endothelial growth factor injection[J]. Int J Ophthalmol, 2020, 13(11): 1758-1764.
[23]
Sahni J, Patel SS, Dugel PU, et al. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-a with faricimab in diabetic macular edema: BOULEVARD Phase 2 Randomized Trial[J]. Ophthalmology, 2019, 126(8): 1155-1170.
[24]
Hirakata T, Hara F, Nochi Y, et al. Short-term real-world outcomes of diabetic macular edema treated with intravitreal faricimab[J]. PLoS One, 2025, 20(5): e0323088.
[25]
Sharma A, Kumar N, Parachuri N, et al. Ranibizumab port delivery system (RPDS): realising long awaited dream of prolonged VEGF suppression[J]. Eye (Lond), 2020, 34(3): 422-423.
[26]
Holekamp NM, Campochiaro PA, Chang MA, et al. Archway randomized phase 3 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration[J]. Ophthalmology, 2022, 129(3): 295-307.
[27]
Kretlow JD, Klouda L, Mikos AG. Injectable matrices and scaffolds for drug delivery in tissue engineering[J]. Adv Drug Deliv Rev, 2007, 59(4-5): 263-273.
[28]
Bencherif SA, Srinivasan A, Horkay F, et al. Influence of the degree of methacrylation on hyaluronic acid hydrogels properties[J]. Biomaterials, 2008, 29(12): 1739-1749.
[29]
Lee S, Hong HK, Song JS, et al. Intravitreal injectable hydrogel rods with long-acting bevacizumab delivery to the retina[J]. Acta Biomater, 2023, 171: 273-288.
[30]
Moghib K, Shivashankar T, Abunamoos A, et al. Efficacy and safety of dexamethasone versus intravitreal aflibercept implants for macular edema: a systematic review and meta-analysis[J]. Eur J Med Res, 2025, 30(1): 273.
[31]
Karti O, Saatci AO. Place of intravitreal dexamethasone implant in the treatment armamentarium of diabetic macular edema[J]. World J Diabetes, 2021, 12(8): 1220-1232.
[32]
Zhou B, Liu H, Xiong F. Efficacy and safety of dexamethasone or triamcinolone in combination with anti-vascular endothelial growth factor therapy for diabetic macular edema: A systematic review and meta-analysis with trial sequential analysis[J]. PLoS One, 2025, 20(2): e0318373.
[33]
张越,王立芳,李筱荣. 糖尿病黄斑水肿联合治疗研究进展[J]. 中华眼底病杂志2023,39(6):505-509.
[34]
郑红梅,邢怡桥,陈长征,等. 玻璃体腔注射抗血管内皮生长因子单克隆抗体ranibizumab联合格栅样激光光凝治疗视网膜分支静脉阻塞合并黄斑水肿疗效观察[J]. 中华眼底病杂志2012,28(5):472-476.
[35]
徐象周,李泓彬,翁宏武,等. 局灶视网膜激光光凝术联合阿柏西普眼内注射溶液经玻璃体腔注射治疗局灶型糖尿病性黄斑水肿的疗效[J]. 医疗装备2023,36(6):1-4.
[36]
Chen JY, Pan HW, Zhang XM, et al. Combining ranibizumab with calcium dobesilate to reduce injection frequency in diabetic macular edema treatment[J]. Int Ophthalmol, 2025, 45(1): 203.
[37]
Ranno S, Vujosevic S, Mambretti M, et al. Role of Vitrectomy in nontractional refractory diabetic macular edema[J]. J Clin Med, 2023, 12(6): 2297.
[38]
柴宛璇,吴伟,刘康成,等. 玻璃体切割手术后联合视网膜下或玻璃体腔注射康柏西普治疗难治性糖尿病黄斑水肿的疗效对比观察[J]. 中华眼底病杂志2025,41(1):25-31.
[39]
张慧,王莹,韩泉洪. 玻璃体切割联合视网膜下注射地塞米松治疗难治性糖尿病黄斑水肿的临床观察[J]. 中华眼底病杂志2025,41(1):21-24.
[40]
Bahadir M, Ertan A, Mertoĝlu O. Visual acuity comparison of vitrectomy with and without internal limiting membrane removal in the treatment of diabetic macular edema[J]. Int Ophthalmol, 2005, 26(1/2): 3-8.
[41]
Guo H, Li W, Nie Z, et al. Microinvasive pars plana vitrectomy combined with internal limiting membrane peeling versus anti-VEGF intravitreal injection for treatment-naïve diabetic macular edema (VVV-DME study): study protocol for a randomized controlled trial[J]. Trials, 2023, 24(1): 685.
[42]
Simpson AR, Dowell NG, Jackson TL, et al. Measuring the effect of pars plana vitrectomy on vitreous oxygenation using magnetic resonance imaging[J]. Invest Ophthalmol Vis Sci, 2013, 54(3): 2028-2034.
[43]
Someya H, Takayama K, Takeuchi M, et al. Outcomes of 25-gauge vitrectomy for tractional and nontractional diabetic macular edema with proliferative diabetic retinopathy[J]. J Ophthalmol, 2019, PMID: 31885887.
[44]
中华医学会眼科学分会眼底病学组,中国医师协会眼科医师分会眼底病专委会,《玻璃体切割手术治疗2型糖尿病视网膜病变专家共识》专家组. 玻璃体切割手术治疗2型糖尿病视网膜病变专家共识[J]. 中华眼底病杂志2024,40(9):663-686.
[45]
Mieno H, Marunaka Y, Inaba T, et al. pH balance and lactic acid increase in the vitreous body of diabetes mellitus patients[J]. Exp Eye Res, 2019, 188: 107789.
[46]
Kumagai K, Ogino N, Fukami M, et al. Removal of foveal hard exudates by subretinal balanced salt solution injection using 38-gauge needle in diabetic patients[J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(9): 1893-1899.
[47]
Nawrocka Z, Nawrocki J. Fundus autofluorescence after vitrectomy with ILM peeling and subfoveal injection in diabetic macular edema[J]. Eur J Ophthalmol, 2025, 35(3): 1036-1043.
[48]
Magrath G, Luvisi J, Russakoff D, et al. Use of a Convolutional neural network to predict the response of diabetic macular edema to intravitreal anti-VEGF treatment: a pilot study[J]. Am J Ophthalmol, 2025, 273: 176-181.
[49]
Zhou ZH, Zhao L, Wang YL, et al. Predictive impact of serous retinal detachment in refractory diabetic macular edema[J]. BMC Ophthalmol, 2025, 25(1): 177.
[50]
Salehi A, Malekahmadi M, Ghanbari H, et al. Macular vessel density in patients with refractory diabetic macular edema in different stages of nonproliferative diabetic retinopathy[J]. J Res Med Sci, 2025, 30: 13.
[51]
Tawfik M, Chen F, Goldberg JL, et al. Nanomedicine and drug delivery to the retina: current status and implications for gene therapy[J]. Naunyn Schmiedebergs Arch Pharmacol, 2022, 395(12): 1477-1507.
[1] 邵小丽, 林燕, 张玲玲, 韩亚琴. 超声引导下子宫肌瘤注射聚桂醇硬化术联合术后米非司酮治疗临床疗效分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 353-360.
[2] 王叶青, 李利彤, 李伟绪, 曹猛. 牙周炎和糖尿病视网膜病变的因果关系:一项双向两样本孟德尔随机化分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 160-168.
[3] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[4] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[5] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[6] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[7] 暴静, 吴霞, 田雅萍, 尹钢. 维生素D3联合孟鲁司特钠治疗支气管哮喘对血清VEGF、TGF-β1及肺功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 63-67.
[8] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[9] 李洪黎, 张妍春. 神经营养因子对糖尿病视网膜病变神经血管单元损伤保护的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 176-182.
[10] 曾春琴, 沈强, 周厚利, 李双龙, 胡高铭. 糖尿病视网膜病变中视网膜色素上皮脂代谢异常的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(01): 50-54.
[11] 刘涵, 张蓝月, 沈强, 方晏红, 周双. 转化生长因子β与糖尿病视网膜病变相关性的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(05): 316-320.
[12] 罗桂彬, 沈强, 张蓝月, 刘涵. 晚期糖化终末产物与糖尿病视网膜病变相关性的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 247-251.
[13] 董力, 李赫妍, 魏文斌. 人工智能在糖尿病视网膜病变中的应用进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(01): 57-61.
[14] 宋奕霄, 陈曦, 张明杰, 王丽平, 庞亚昌, 徐卓明. 心肌血管微环境在先天性心脏病相关的慢性右心衰竭进展中的作用[J/OL]. 中华心脏与心律电子杂志, 2024, 12(04): 239-244.
[15] 冯欣, 尤素伟, 史晓梅, 王相斌, 巩巧丽, 王俊英. 血清VEGF-A、HIF-1α、MIF水平与急性脑梗死并发脑心综合征的关联性研究[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(03): 213-219.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?