切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2025, Vol. 15 ›› Issue (01) : 50 -54. doi: 10.3877/cma.j.issn.2095-2007.2025.01.009

综述

糖尿病视网膜病变中视网膜色素上皮脂代谢异常的研究进展
曾春琴1,, 沈强1, 周厚利1, 李双龙1, 胡高铭1   
  1. 1. 402260 重庆市江津区中心医院眼科
  • 收稿日期:2025-01-06 出版日期:2025-02-28
  • 通信作者: 曾春琴
  • 基金资助:
    重庆市自然科学基金面上项目(CSTB2023NSCQMSX0639)

Research progress on retinal pigm ent epithelial lipid metabolism abnormalities in diabetic retinopathy

Chunqin Zeng1,, Qiang Shen1, Houli Zhou1, Shuanglong Li1, Gaoming Hu1   

  1. 1. Department of Ophthalmology,Chongqing Jiangjin District Central Hospital,Chongqing 402260,China
  • Received:2025-01-06 Published:2025-02-28
  • Corresponding author: Chunqin Zeng
引用本文:

曾春琴, 沈强, 周厚利, 李双龙, 胡高铭. 糖尿病视网膜病变中视网膜色素上皮脂代谢异常的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(01): 50-54.

Chunqin Zeng, Qiang Shen, Houli Zhou, Shuanglong Li, Gaoming Hu. Research progress on retinal pigm ent epithelial lipid metabolism abnormalities in diabetic retinopathy[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2025, 15(01): 50-54.

糖尿病视网膜病变(DR)是糖尿病常见且严重的微血管并发症之一,其发病机制复杂。近年来,对视网膜色素上皮(RPE)细胞脂代谢异常的研究逐渐成为热点。RPE细胞是视网膜结构和功能的关键组成部分,其脂代谢稳态对于维持视网膜功能、调控氧化应激及调控炎症反应等过程至关重要。脂质代谢异常可引发RPE细胞结构损伤和功能障碍,从而加剧DR的进程。本文中笔者就RPE细胞在DR发生发展中的作用机制进行综述,同时系统梳理了RPE细胞脂代谢失衡导致DR的相关研究进展,重点探讨脂质代谢相关信号通路的变化及其在DR病理过程中的重要性,旨在为DR的早期防治及靶向干预策略提供新的思路和参考依据。

Diabetic retinopathy(DR)is one of the most common and severe microvascular complications of diabetes,with a complex pathogenesis.In recent years,research on lipid metabolism abnormalities in retinal pigment epithelial(RPE)cells has gradually paid more attention.RPE cells are crucial components of retinal structure and function,and their lipid metabolism homeostasis is essential for maintaining retinal function and regulating processes such as oxidative stress and inflammatory responses.Abnormal lipid metabolism can lead to structural damage and functional impairment of RPE cells,thus exacerbating the progression of diabetic retinopathy.The role of RPE cells in the occurrence and development of DR,systematically organizes the research progress related to RPE lipid metabolism imbalance and DR was reviewed,which focuses on changes in lipid metabolism-related signaling pathways and their importance in the pathological process of DR,aiming to provide new ideas and reference for the early prevention and treatment,aswell as targeted intervention strategies for DR.

[1]
Yang L,Qinrui H,Bin W.Effects of Apelin on the fibrosis of retinal tissues and Müller cells in diabetes retinopathy through the JAK2/STAT3 signalling pathway[J].Autoimmunity,2023,56(1):2259129.
[2]
Altaf MD,Mudasir M,Irfat A,etal.Preserving sight:Managing and preventing diabetic retinopathy[J].Open Health,2023,4(1):20230019.
[3]
Pilotto E,Cosmo E,Torresin T,et al.Outer retinal and choroidal changes in adolescentswith long-lasting type 1 diabetes[J].JClin Med,2023,13(1):229.
[4]
Azarova EI,Gureeva VA,Postnikova IM,et al.The link of single nucleotide polymorphism rs4880 of the SOD2 gene to the development of microvascular complications of type 2 diabetes mellitus[J].Res Results Biomed,2023,9(4):461-473.
[5]
Ergun NO,Ilhan OH.Advancing diabetic retinopathy severity classification through stacked generalization in ensemble deep learningmodels[J].Trait Signal,2023,40(6):93-112.
[6]
Shimpi KJ,Shanmugam P.A hybrid diabetic retinopathy neural network model for early diabetic retinopathy detection and classification of fundus images[J].Trait Signal,2023,40(6):341-350.
[7]
Chen J,Wang Q,Li R,et al.The role of Keap1-Nrf2 signaling pathway during the progress and therapy of diabetic retinopathy[J].Life Sci,2023,PMID:38159594.
[8]
Raciborska A,Sidorczuk P,Konopińska J,et al.Interocular symmetry of choroidal parameters in patients with diabetic retinopathy with and without diabeticmacular edema[J].JClin Med,2023,13(1):176.
[9]
Huang BB,Fukuyama H,Burns SA,et al.Imaging the retinal vascularmural cells in vivo:elucidating the timeline of their loss in diabetic retinopathy[J].Arterioscler Thromb Vasc Biol,2023,44(2):465-476.
[10]
Amna Z,Rabbia M,Nabeel A,et al.Eye diseases detection using deep learning with BAM attention module[J].Multimed Tools Appl,2023,83(20):59061-59084.
[11]
Aruna V,Amruthavalli GV,Gayathri R.Ameliorate diabetic retinopathy through aldose-sorbitol cleavage[J].J Pharm Res Int,2023,35(34):57-61.
[12]
Ali HA,Rabab O,H.A H,et al.Diabetic retinopathy progression associated with haplotypes of two VEGFA SNPs rs2010963 and rs699947[J].Egypt JBasic Appl Sci,2023,10(1):123-134.
[13]
Su X,Huang H,Lai J,et al.Long noncoding RNAs as potential diagnostic biomarkers for diabetes mellitus and complications:A systematic review and meta-analysis[J].J Diabetes,2023,16(2):13510.
[14]
Shah VN,Kanapka LG,Akturk HK,et al.Time in range is associated with incident diabetic retinopathy in adultswith type 1 diabetes:a longitudinal study[J].Diabetes Technol Ther,2024,26(4):246-251.
[15]
Mohamed M,Abraham K,Darwish NHE,et al.12-HETE activates Müller glial cells:The potential role of GPR31 and miR-29[J].Prostaglandins Other Lipid Mediat,2023,171:106805.
[16]
TomiĉM,Vrabec R,Hendeljađ,et al.Diagnostic accuracy of hand-held fundus camera and artificial intelligence in diabetic retinopathy screening[J].Biomedicines,2023,12(1):34
[17]
Tãnasie AC,Dan OA,Icã MO,et al.Retinal functional impairment in diabetic retinopathy[J].Biomedicines,2023,12(1):44.
[18]
Gawęcki M,Kiciński K,Bianco L,et al. Regression of neovascularization after panretinal photocoagulation combined with anti-VEGF injection for proliferative diabetic retinopathy-a review[J].Diagnostics,2023,14(1):31.
[19]
Palos KS,Blasco AI,Borges CC,etal.Oxidative stressmediates epigenetic modifications and the expression ofmiRNAs and genes related to apoptosis in diabetic retinopathy patients[J].JClin Med,2023,13(1):74.
[20]
Xu YX,Pu SD,Zhang YT,etal.Insulin resistance isassociated with the presence and severity of retinopathy in patientswith type 2 diabetes[J].Clin Exp Ophthalmol,2024,52(1):63-77.
[21]
Nawaz IM. Diabetic Retinopathy——advancement in understanding the pathophysiology and management strategies[M].London:Intech Open:2024.
[22]
Navaneethan R,Devarajan H.Enhancing diabetic retinopathy detection through preprocessing and feature extraction with MGACSG algorithm[J].Expert Syst Appl,2024,249:123418.
[23]
Li J,Zheng G,Jiang D,et al.Mendelian randomization analysis reveals a causal effect of Streptococcus salivarius on diabetic retinopathy through regulating host fasting glucose[J].Journal of cellular and molecularmedicine,2024,28(7):18200.
[24]
Liu JY,Zhao YJ,Han WW,et al.Microvascular burden and long-term risk of stroke and dementia in type 2 diabetesmellitus[J].JAffect Disord,2024,354:68-74.
[25]
Zhang D,Liu M,Chen F,etal.Graph-basedmulti-level feature fusion network for diabetic retinopathy grading using ultra-widefield images[J].Biomed Signal Process Control,2024,93:106134.
[26]
Shakibania H,Raoufi S,Pourafkham B,etal.Dual branch deep learning network for detection and stage grading of diabetic retinopathy[J]. Biomed Signal Process Control, 2024,93:106168.
[27]
Stevens H,Paz LDM,Cooper B,et al.Long-term use of semaglutide and risk of diabetic retinopathy progression[J].Endocr Metab Sci,2024,15:100168.
[28]
Sharma Y,Kaur R,Khan B,et al.Diabetic retinopathy screening using MIIRet Cam assisted smartphone-based fundus imaging[J].JMed Surg Public Health,2024,2:100068.
[29]
Macdonald T,Dinnes J,Maniatopoulos G,et al.Target product profile for a machine learning-automated retinal imaging analysis software for use in english diabetic eye screening:protocol for a mixed methods study[J].JMIR Res Protoc,2024,13:50568.
[30]
Huemer J,Heeren TF.Correction:Sight threatening diabetic retinopathy in patientswithmacular telangiectasia type2[J].Int JRetina Vitreous,2024,10(1):29-29.
[31]
蒋文君,赵柏林,马善波,等.糖尿病视网膜病变患者外周血中炎症细胞因子和CD8+T细胞亚群的表达水平变化[J].国际眼科杂志,2025,25(4):638-643.
[32]
郭丹仪,顾颖敏,林琬宜,等.基于网络药理学和分子对接技术探讨降糖三黄片治疗糖尿病视网膜病变的作用机制[J].广州中医药大学学报,2025,42(4):946-955.
[33]
张艳丽,陈皑皑.老年糖尿病视网膜病变病人心理测量量表的汉化和信效度检验[J].循证护理,2025,11(6):1167-1170.
[34]
张颖,赵祺旸,郗群.基于深度融合网络研究糖尿病视网膜病变[J].中国医学物理学杂志,2025,42(3):347-355.
[35]
王亦山,罗向霞,苏莉,等.线粒体自噬与NLRP3炎症小体的相互作用在糖尿病视网膜病变中作用的研究进展[J].中国病理生理杂志,2025,41(3):600-605.
[36]
王雅芸,井发菊,陶海娟,等.糖尿病视网膜病变患者25-羟维生素D与血清促甲状腺激素水平的相关性[J].中国临床研究,2025,38(3):420-423.
[37]
杨滢,张晟来,桑爱民.眼睛的昼夜节律及其对眼部疾病的影响[J].中国临床研究,2025,38(3):478-482.
[38]
毛蕾,胡明生,刘玮,等.人巨细胞病毒感染对糖尿病视网膜病变患者TGF-β/Smad信号通路及Th1/Th2型细胞因子的影响[J/OL].中华医院感染学杂志,2025,35(9):1342-1346.
[39]
王雪晴,王斌.人参皂苷Rg1改善糖尿病视网膜病变的药理作用研究进展[J].现代药物与临床,2025,40(3):816-820.
[40]
张蕾,张素梅,杨振,等.基于转录组学分析昆布多糖对C57BL/6小鼠非增生性糖尿病视网膜病变的影响[J/OL].安徽医科大学学报,2025,60(3):392-398.
[41]
薛慧,李颖,程程,等.外周血MHR、SII与2型糖尿病视网膜病变的相关性分析[J].国际检验医学杂志,2025,46(5):599-604.
[42]
范明峰.血府逐瘀汤治疗气滞血瘀型非增殖性糖尿病视网膜病变患者的临床效果分析[J].大医师,2025,10(6):90-92.
[43]
肖辉,魏琳,温丽萍.免散瞳眼底照相技术应用于糖尿病视网膜病变筛查的效果分析[J].大医师,2025,10(6):123-125.
[44]
孙霞,但玲英,郑鹏,等.2型糖尿病患者脂肪因子与糖尿病视网膜病变的关联研究[J].预防医学,2025,37(3):248-252.
[1] 王峰, 曲更宝, 王文彦, 代艳亭. 罗汉果醇对人乳腺癌细胞自噬和凋亡的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 27-32.
[2] 唐丹, 姚晓曦, 杨博文, 薛绍龙, 李梦瑶, 韦柳杏, 郄明蓉. 双肾上腺皮质激素样激酶1对子宫内膜样腺癌患者临床特征的影响[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 582-590.
[3] 陈浩, 林梁, 邹来宾, 郭胜蓝. 成石饮食诱发胆结石及肝损伤机制的研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 42-47.
[4] 李智, 冯芸. NF-κB 与MAPK 信号通路及其潜在治疗靶点在急性呼吸窘迫综合征中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 840-843.
[5] 张敏, 朱建华, 缪雅芳, 郭锦荣. 菝葜皂苷元对肝癌HepG2细胞抑制作用的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 328-335.
[6] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[7] 郑希彦, 吴润鹏, 杜飞, 谢玉芬, 王平根, 张广权, 翟航, 何函樨, 李瑞曦. 基于生信分析SLC29A3 在肝癌中的表达及临床意义[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 290-295.
[8] 蒙柄成, 朱海, 任洪冰, 毛伟民, 韦德令, 徐邦浩, 王继龙, 金宗睿, 蓝祝晶, 黄柯豫, 卢婷婷, 张灵, 郭雅, 文张. IGF-1 介导FOXO 信号通路在大鼠ALPPS 术后肝再生中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 118-125.
[9] 刘涵, 张蓝月, 沈强, 方晏红, 周双. 转化生长因子β与糖尿病视网膜病变相关性的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(05): 316-320.
[10] 赵鸿鹰, 江荣科, 王宇, 朱梅, 李艳芳. CEACAM19调控PI3K/AKT信号通路对胃癌发病及预后判断的研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 16-22.
[11] 嵇宏声, 魏万顷, 邱建国, 王留成, 姜福金, 张先云, 王苏贵. KPNB1 在膀胱癌中的表达及其对膀胱癌细胞增殖和迁移能力的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(11): 1044-1053.
[12] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[13] 陈秋怡, 林熙, 刘珍银. 淋巴管畸形分子机制的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 374-379.
[14] 李忠鑫, 陈雪英, 甘立军. 汉黄芩素抗炎活性的研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(01): 20-25.
[15] 申超, 吴雪, 张政, 杜毓锋. 龟龄集对小鼠肺纤维化的改善作用及作用机制[J/OL]. 中华老年病研究电子杂志, 2024, 11(04): 9-15.
阅读次数
全文


摘要