切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2025, Vol. 15 ›› Issue (03) : 176 -182. doi: 10.3877/cma.j.issn.2095-2007.2025.03.009

综述

神经营养因子对糖尿病视网膜病变神经血管单元损伤保护的研究进展
李洪黎1,2, 张妍春2,()   
  1. 1712046 咸阳,陕西中医药大学中医学院2023级硕士研究生
    2710004 西安市人民医院(西安市第四医院)眼科 陕西省眼科医院 西北大学附属人民医院
  • 收稿日期:2025-05-27 出版日期:2025-06-28
  • 通信作者: 张妍春
  • 基金资助:
    陕西省重点研发计划项目(2021SF-162); 西安市科技计划重大研究项目(201805104YX12SF38(3)); 西安市人民医院(西安市第四医院)科研孵化基金项目(LH-18); 国际糖尿病交流与实践专项基金项目(Z-2017-26-2302)

Research progress on the protective effects of neurotrophic factors against damage to the neurovascular unit in diabetic retinopathy

Hongli Li1,2, Yanchun Zhang2,()   

  1. 1Master′s degree 2023, College of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, China
    2Shaanxi Eye Hospital, Xi′an People′s Hospital (Xi′an Fourth Hospital), Affiliated People′s Hospital of Northwest, Xi′an 710004, China
  • Received:2025-05-27 Published:2025-06-28
  • Corresponding author: Yanchun Zhang
引用本文:

李洪黎, 张妍春. 神经营养因子对糖尿病视网膜病变神经血管单元损伤保护的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(03): 176-182.

Hongli Li, Yanchun Zhang. Research progress on the protective effects of neurotrophic factors against damage to the neurovascular unit in diabetic retinopathy[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2025, 15(03): 176-182.

糖尿病视网膜病变(DR)是致工作年龄成人视力障碍的主要原因,其发病机制复杂,涉及视网膜神经血管单元(RNVU)的结构破坏和功能障碍。神经营养因子(NTF)作为调控神经元生存、分化及血管稳定的重要分子,近年来在DR的神经血管保护中显示出潜在的治疗价值。本文中笔者就DR中RNVU的主要病理变化,NTF对RNVU损伤的保护作用及机制进行综述,重点阐述NTF对高血糖RNVU损伤保护的研究进展以及潜在的临床应用前景。

Diabetic retinopathy (DR) is the main cause of visual impairment in working-age adults, with a complex pathogenesis involving structural damage and functional impairment of the retinal neurovascular unit (RNVU). Neurotrophic factor (NTF), as important molecules regulating neuronal survival, differentiation and vascular stability, has shown potential therapeutic value in the neurovascular protection of DR in recent years. The principal pathological alterations of the RNVU associated with DR was delineated, the protective roles and mechanisms of NTFs against RNVU injury, and the advancements in research concerning NTFs in mitigating hyperglycemia-induced RNVU damage alongside their prospective clinical applications were elucidated and emphasized, aiming to provide a theoretical basis for further experimental research and clinical treatment in this paper.

[1]
Sun Q, Jing Y, Zhang B, et al. The risk factors for diabetic retinopathy in a Chinese population: A cross-sectional study[J]. Diabetes Res, 2021, PMID: 5340453.
[2]
Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: A position statement by the American diabetes association[J]. Diabetes Care, 2017,40(3): 412-418.
[3]
Noonan JE, Lamoureux EL, Sarossy M. Neuronal activity-dependent regulation of retinal blood flow[J]. Clin Exp Ophthalmol, 2015, 43(7) : 673-682.
[4]
Reed MJ, Damodarasamy M, Banks WA. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer′s disease[J]. Tissue Barriers, 2019, 7(4) : 1651157.
[5]
Metea MR, Newman EA. Signalling within the neurovascular unit in the mammalian retina[J]. Exp Physiol, 2007, 92(4): 635-640.
[6]
欧阳灵艺,贺涛,邢怡桥.青光眼中视网膜神经血管单元损伤的研究进展[J].国际眼科杂志2024,24(2):230-235.
[7]
Yang S, Zhang J, Chen L. The cells involved in the pathological process of diabetic retinopathy[J]. Biomed Pharmacother, 2020, 132: 110818.
[8]
Sinclair SH, Schwartz SS. Diabetic retinopathy-an underdiagnosed and undertreated inflammatory, neuro-vascular complication of diabetes[J]. Front Endocrinol (Lausanne), 2019, 10: 843.
[9]
Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retina[J]. Invest Ophthalmol Vis Sci, 2003, 44(12): 5327-5334.
[10]
Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration[J]. Int J Mol Sci, 2018, 19(1): 110.
[11]
Pannicke T, Iandiev I, Wurm A, et al. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina[J].Diabetes, 2006, 55(3): 633-639.
[12]
Mizutani M, Gerhardinger C, Lorenzi M. Müller cell changes in human diabetic retinopathy[J]. Diabetes1998,47(3): 445-449.
[13]
Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy[J]. Front Immunol, 2020, 11: 564077.
[14]
Feenstra DJ, Yego EC, Mohr S. Modes of retinal cell death in diabetic retinopathy[J]. Clin Exp Ophthalmol, 2013, 4(5): 298.
[15]
梁汇珉,李赵伟,李铮,等.脑源性神经营养因子对糖尿病大鼠视网膜Müller细胞的保护作用[J].眼科新进展2017,37(12):1110-1113,1118.
[16]
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy[J]. Nat Rev Endocrinol, 2021, 17(4): 195-206.
[17]
Aung MH, Park HN, Han MK, et al. Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes[J]. Neurosci, 2014, 34(3): 726-736.
[18]
王苏豫,姚雨佳,李佳骏,等.脑源性神经营养因子对视网膜神经血管单元的保护作用[J].国际眼科杂志2024,24(2):216-220.
[19]
Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2011, 52(2): 1156-1163.
[20]
Li B, Ning B, Yang F, et al. Nerve growth factor promotes retinal neurovascular unit repair: A Review[J]. Curr Eye Res, 2022, 47(8): 1095-1105.
[21]
Pfister F, Feng Y, vom-Hagen F, et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy[J]. Diabetes, 2008, 57(9): 2495-2502.
[22]
Oshitari T. Neurovascular Impairment and Therapeutic Strategies in Diabetic Retinopathy[J]. Int J Environ Res Public Health, 2021, 19(1): 439.
[23]
Skaper SD. Neurotrophic factors: An Overview[J]. Methods Mol Biol, 2018, 1727: 1-17.
[24]
Arroba AI, Alcalde-Estevez E, García-Ramírez M,et al. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice[J]. Biochim Biophys Acta, 2016, 1862(9): 1663-1674.
[25]
李洁.NGF及其受体在盆腔器官脱垂患者阴道前壁组织中的表达及意义[D]. 郑州:郑州大学,2020.
[26]
Harada C, Harada T, Quah HM, et al. Role of neurotrophin-4/5 in neural cell death during retinal development and ischemic retinal injury in vivo[J]. Invest Ophthalmol Vis Sci, 2005, 46(2): 669-673.
[27]
Porcino C, Mhalhel K, Briglia M, et al. Neurotrophins and trk neurotrophin receptors in the retina of adult killifish (Nothobranchius guentheri)[J]. Int J Mol Sci, 2024, 25(5): 2732.
[28]
Reichardt LF. Neurotrophin-regulated signalling pathways[J]. Philos Trans R Soc Lond B Biol Sci, 2006, 361(1473): 1545-1564.
[29]
Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders[J]. Pharmacol Rev, 2012, 64(2): 238-258.
[30]
Levy MJF, Boulle F, Steinbusch HW, et al. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression[J]. Psychopharmacology (Berl), 2018, 235(8): 2195-2220.
[31]
Von-Bartheld CS. Neurotrophins in the developing and regenerating visual system[J]. Histol Histopathol, 1998, 13(2): 437-459.
[32]
Garcia TB, Hollborn M, Bringmann A. Expression and signaling of NGF in the healthy and injured retina[J]. Cytokine Growth Factor Rev, 2017, 34: 43-57.
[33]
Tirassa P, Rosso P, Iannitelli A. Ocular nerve growth factor (NGF) and NGF eye drop application as paradigms to investigate NGF neuroprotective and reparative actions[J]. Methods Mol Biol, 2018, 1727: 19-38.
[34]
Rocco ML, Balzamino BO, Petrocchi PP, et al. Effect of purified murine NGF on isolated photoreceptors of a rodent developing retinitis pigmentosa[J]. PLoS Onj, 2015, 10(4): e0124810.
[35]
Ng DS, Chiang PP, Tan G, et al. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy[J]. Clin Exp Ophthalmol, 2016, 44(4): 243-250.
[36]
Shityakov S, Nagai M, Ergün S, et al. The protective effects of neurotrophins and microRNA in diabetic retinopathy, nephropathy and heart failure via regulating endothelial function[J]. Biomolecules, 2022, 12(8): 1113.
[37]
Kim ST, Chung YY, Hwang HI, et al. Differential expression of BDNF and BIM in streptozotocin-induced diabetic rat retina after fluoxetine injection[J]. In Vivo, 2021, 35(3): 1461-1466.
[38]
Garhöfer G, Chua J, Tan B, et al. Retinal neurovascular coupling in diabetes[J]. Clin Med, 2020, 9(9): 2829.
[39]
Arévalo JC, Wu SH. Neurotrophin signaling: many exciting surprises![J]. Cell Mol Life Sci, 2006, 63(13): 1523-1537.
[40]
Olivieri G, Otten U, Meier F, et al. Oxidative stress modulates tyrosine kinase receptor A and p75 receptor (low-affinity nerve growth factor receptor) expression in SHSY5Y neuroblastoma cells[J]. Neurol Clin Neurophysiol, 2002, 2002(2): 2-10.
[41]
Mysona BA, Matragoon S, Stephens M, et al. Imbalance of the nerve growth factor and its precursor as a potential biomarker for diabetic retinopathy[J].Biomed Res Int, 2015, PMID: 571456.
[42]
李铮.神经生长因子对糖尿病大鼠视网膜神经节细胞及突触素表达的影响[D].锦州:锦州医科大学,2018.
[43]
Mohamed R, El-Remessy AB. Imbalance of the nerve growth factor and its precursor: Implication in diabetic retinopathy[J]. Clin Exp Ophthalmol, 2015, 6(5): 483.
[44]
Troullinaki M, Alexaki VI, Mitroulis I, et al. Nerve growth factor regulates endothelial cell survival and pathological retinal angiogenesis[J]. Cell Mol Med, 2019, 23(4): 2362-2371.
[45]
Mohamed R, Shanab AY, El Remessy AB. Deletion of the neurotrophin receptor p75NTR prevents diabetes-induced retinal acellular capillaries in streptozotocin-induced mouse diabetic model[J]. Diabetes Metab Disord Control, 2017, 4(6): 129.
[46]
Matragoon S, Al-Gayyar MM, Mysona BA, et al. Electroporation-mediated gene delivery of cleavage-resistant pronerve growth factor causes retinal neuro- and vascular degeneration[J]. Mol Vis, 2012, 18: 2993-3003.
[47]
Ji Z, Luo J, Su T, et al. miR-7a targets insulin receptor substrate-2 gene and suppresses viability and invasion of cells in diabetic retinopathy mice via PI3K-Akt-VEGF Pathway[J]. Diabetes Metab Syndr Obes, 2021, 14: 719-728.
[48]
Hammes HP, Federoff HJ, Brownlee M. Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes[J]. Mol Med, 1995, 1(5): 527-534.
[49]
Saleh I, Maritska Z, Parisa N,et al. Inhibition of receptor for advanced glycation end products as new promising strategy treatment in diabetic retinopathy[J]. Open Access Maced J Med Sci, 2019, 7(23): 3921-3924.
[50]
Afarid M, Namvar E, Sanie-Jahromi F. Diabetic retinopathy and BDNF: A review on its molecular basis and clinical applications[J]. Ophthalmol, 2020, PMID: 32509339.
[51]
Bikbova G, Oshitari T, Baba T, et al. Neurotrophic factors for retinal ganglion cell neuropathy——with a special reference to diabetic neuropathy in the retina[J]. Curr Diabetes Rev, 2014, 10(3): 166-176.
[52]
Sadikan MZ, Abdul-Nasir NA. Diabetic retinopathy: emerging concepts of current and potential therapy[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(12): 3395-3406.
[53]
Ola MS, Nawaz MI, Khan HA, et al. Neurodegeneration and neuroprotection in diabetic retinopathy[J]. Int J Mol Sci, 2013, 14(2): 2559-2572.
[54]
Krabbe KS, Nielsen AR, Krogh-Madsen R, et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes[J]. Diabetologia, 2007, 50(2): 431-438.
[55]
Ola MS, Nawaz MI, El-Asrar AA, et al. Reduced levels of brain derived neurotrophic factor (BDNF) in the serum of diabetic retinopathy patients and in the retina of diabetic rats[J]. Cell Mol Neurobiol, 2013, 33(3): 359-367.
[56]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications[J]. Arch Med Sci, 2015, 11(6): 1164-1178.
[57]
Zhang Z, Zhang Y, Zhou Z, et al. BDNF regulates the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway during fracture healing[J]. Mol Med Rep, 2017, 15(3): 1362-1367.
[58]
Liu Y, Tao L, Fu X, et al. BDNF protects retinal neurons from hyperglycemia through the TrkB/ERK/MAPK pathway[J]. Mol Med Rep, 2013, 7(6): 1773-1778.
[59]
Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J].Cell Biochem, 2010, 110(6): 1306-1313.
[60]
Li L, Chen R, Zhang H, et al. The epigenetic modification of DNA methylation in neurological diseases[J]. Front Immunol, 2024, 15: 1401962.
[61]
Parisi V, Oddone F, Roberti G, et al. Neurotrophic factors, and optic neuropathy[J]. Int J Mol Sci, 2020, 21: 6394-6398.
[62]
Bai Y, Xu Y, Wu X, et al. Role of brain-derived neurotrophic factor in diabetic retinopathy: A comprehensive review[J]. Biomed Pharmacother, 2021, 137: 111235
[63]
Oshitari T, Oshitari N, Yoshida H, et al. Effect of neurotrophic factors on neuronal apoptosis and neurite regeneration in cultured rat retinas exposed to high glucose[J]. Brain Res, 2010, 1346: 43-51.
[64]
Abu-El-Asrar AM, Mohammad G, De-Hertogh G, et al. Neurotrophins and neurotrophin receptors in proliferative diabetic retinopathy[J]. PLoS One, 2013, 8(6): e65472.
[65]
Sun Z, Hu W, Yin S, et al. NGF protects against oxygen and glucose deprivation-induced oxidative stress and apoptosis by up-regulation of HO-1 through MEK/ERK pathway[J]. Neurosci Lett,2017, 641: 8-14.
[66]
Xu B, Dong Q, Yu C, et al. Advances in research on the activity evaluation, mechanism and structure-activity relationships of natural antioxidant peptides[J]. Antioxidants (Basel), 2024, 13(4): 479.
[67]
Boss JD, Singh PK, Pandya HK, et al. Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(12): 5594-5603.
[68]
Atkinson J, Panni MK, Lund RD. Effects of neurotrophins on embryonic retinal outgrowth[J]. Brain Res Dev Brain Res, 1999, 112(2): 173-180.
[69]
Mysona BA, Al-Gayyar MM, Matragoon S, et al. Modulation of p75(NTR) prevents diabetes- and proNGF-induced retinal inflammation and blood-retina barrier breakdown in mice and rats[J]. Diabetologia, 2013, 56(10): 2329-2339.
[70]
Fico E, Rosso P, Triaca V, et al. NGF prevents loss of TrkA/VEGFR2 Cells, and VEGF isoform dysregulation in the retina of adult diabetic rats[J]. Cells, 2022, 11(20): 3246.
[71]
Seki M, Tanaka T, Nawa H, et al. Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells[J]. Diabetes, 2004, 53(9): 2412-2419.
[72]
Lehre KP, Davanger S, Danbolt NC. Localization of the glutamate transporter protein GLAST in rat retina[J]. Brain Res, 1997, 744(1): 129-137.
[73]
Khalin I, Alyautdin R, Kocherga G, et al. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness[J]. Int J Nanomedicine, 2015, 10: 3245-3267.
[74]
Suzuki T, Ooto S, Akagi T, et al. Effects of prolonged delivery of brain-derived neurotrophic factor on the fate of neural stem cells transplanted into the developing rat retina[J]. Biochem Biophys Res Commun, 2003, 309(4): 843-847.
[75]
Fu QL, Li X, Yip HK,et al. Combined effect of brain-derived neurotrophic factor and LINGO-1 fusion protein on long-term survival of retinal ganglion cells in chronic glaucoma[J]. Neuroscience, 2009, 162(2): 375-382.
[76]
Bennett J, Wilson J, Sun D, et al. Adenovirus vector-mediated in vivo gene transfer into adult murine retina[J]. Invest Ophthalmol Vis Sci, 1994, 35(5): 2535-2542.
[77]
Ren R, Li Y, Liu Z, et al. Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure[J]. Invest Ophthalmol Vis Sci, 2012, 53(2): 1003-1011.
[78]
Zhou XM, Yuan HP, Wu DL, et al. Study of brain-derived neurotrophic factor gene transgenic neural stem cells in the rat retina[J]. Chin Med J (Engl), 2009, 122(14): 1642-1649.
[79]
Giannaccini M, Usai A, Chiellini F, et al. Neurotrophin-conjugated nanoparticles prevent retina damage induced by oxidative stress[J]. Cell Mol Life Sci, 2018, 75(7): 1255-1267.
[80]
Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications[J]. Invest Ophthalmol Vis Sci, 2010, 51(11): 5403-5420.
[81]
Sieving PA, Caruso RC, Tao W, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants[J]. Proc Natl Acad Sci USA, 2006, 103(10): 3896-3901.
[82]
Ola MS, Ahmed MM, Shams S, et al. Neuroprotective effects of quercetin in diabetic rat retina[J]. Saudi J Biol Sci, 2017, 24(6): 1186-1194.
[83]
Elsherbiny NM, Abdel-Mottaleb Y, Elkazaz AY, et al. Carbamazepine alleviates retinal and optic nerve neural degeneration in diabetic mice via nerve growth factor-induced PI3K/Akt/mTOR activation[J]. Front Neurosci, 2019, 13: 1089.
[84]
Barcelona PF, Sitaras N, Galan A, et al. p75NTR and its ligand proNGF activate paracrine mechanisms etiological to the vascular, inflammatory, and neurodegenerative pathologies of diabetic retinopathy[J]. Neurosci, 2016, 36(34): 8826-8841.
[85]
Lu L, Wang J, Wang M, et al. Regulatory effects of miR365 and bdnf in müller cells involved in diabetic retina[J]. Invest Ophthalmol Vis Sci, 2013,54(15): 1150.
[86]
Yang L, Yao Y, Zheng W, et al. Nitric oxide mediates negative feedback on the TXNIP/NLRP3 inflammasome pathway to prevent retinal neurovascular unit dysfunction in early diabetic retinopathy[J]. Free Radic Biol Med, 2025, 233: 279-291.
[1] 邓吟咏, 钟洁, 蒋理立, 杨婕. 结直肠肿瘤手术后并发症的预测与预防:基于临床研究的最新进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 579-583.
[2] 杨春燕, 周晓苹. 机器人辅助技术在腹腔镜结直肠癌根治术中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 584-588.
[3] 何羽. 腔镜微创手术治疗分化型甲状腺癌的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 456-458.
[4] 赵淑樱, 张聃. 腹腔镜胃癌外科治疗进展与发展趋势[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 459-462.
[5] 喻星豪, 黄娜, 刘罡. 肺癌的靶向与免疫联合治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 330-333.
[6] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[7] 兰永, 刘晶, 杨志琦, 吴浪, 沙小春, 李明皓. 肠道菌群在胰腺炎发生发展中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 481-486.
[8] 曾春琴, 沈强, 周厚利, 李双龙, 胡高铭. 糖尿病视网膜病变中视网膜色素上皮脂代谢异常的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(01): 50-54.
[9] 刘涵, 张蓝月, 沈强, 方晏红, 周双. 转化生长因子β与糖尿病视网膜病变相关性的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(05): 316-320.
[10] 周振宇, 杨利君, 薛伟, 彭亮. 推拿治疗肠易激综合征的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 185-190.
[11] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[12] 杨宁, 王富春. 头针久留法的临床研究进展[J/OL]. 中华针灸电子杂志, 2025, 14(01): 24-27.
[13] 马一茁, 胡叶文. 脑卒中患者营养风险筛查与评估工具的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 54-57.
[14] 游洪, 乔杉, 张宇. 脑卒中患者居家延续护理模式的研究新进展[J/OL]. 中华脑血管病杂志(电子版), 2025, 19(01): 63-67.
[15] 金小娟, 马晓瑭. 血管内皮细胞来源胞外囊泡在缺血性脑卒中作用的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 621-629.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?