[1] |
Rajkomar A, Dean J, Kohane I. Machine Learning in Medicine[J]. N Engl J Med, 2019, 380(14): 1347-1358.
|
[2] |
曾伟良,吴淼森,孙为军,等. 自动驾驶出租车调度系统研究综述[J]. 计算机科学,2020,47(5): 181-189.
|
[3] |
戴震军. 人工智能技术应用于自动驾驶汽车面临的挑战及发展趋势分析[J]. 无线互联科技,2020,17(6): 162-163.
|
[4] |
郭坦,李金丽. 人工智能技术在网络安全问题中的应用探讨[J]. 信息技术与信息化,2020(5): 210-211.
|
[5] |
Zhang Y, Wang N, Liu H. Applications of artificial intelligence in the screening of glaucoma in China[J]. J Med Syst, 2020, 44(7): 124.
|
[6] |
Liu H, Li L, Wormstone IM, et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs[J]. JAMA Ophthalmol, 2019, 137(12): 1353-1360.
|
[7] |
Harris J. Who owns my autonomous vehicle? Ethics and responsibility in artificial and human intelligence[J]. Camb Q Healthc Ethics, 2018, 27(4): 599-609.
|
[8] |
Sedjelmaci H, Guenab F, Senouci SM, et al. Cyber security based on artificial intelligence for cyber-physical systems[J]. IEEE Network, 2020, 34(3): 6-7.
|
[9] |
Li T, Gao Y, Wang K, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 2019, 501: 511-522.
|
[10] |
Ruamviboonsuk P, Cheung CY, Zhang X, et al. Artificial intelligence in ophthalmology: evolutions in Asia[J]. Asia Pac J Ophthalmol (Phila), 2020, 9(2): 78-84.
|
[11] |
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina[J]. Prog Retin Eye Res, 2018, 67: 1-29.
|
[12] |
Lim G, Bellemo V, Xie Y, et al. Different fundus imaging modalities and technical factors in AI screening for diabetic retinopathy: a review[J]. Eye Vis (Lond), 2020, 7: 21.
|
[13] |
Ting DSW, Cheung CY, Nguyen Q, et al. Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: a multi-ethnic study[J]. NPJ Digit Med, 2019, 2: 24.
|
[14] |
Li L, Xu M, Liu H, et al. A Large-Scale Database and a CNN model for attention-based glaucoma detection[J]. IEEE Trans Med Imaging, 2020, 39(2): 413-424.
|
[15] |
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311(18): 1901-1911.
|
[16] |
Stevens GA, White RA, Flaxman SR, et al. Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990—2010[J]. Ophthalmology, 2013, 120(12): 2377-2384.
|
[17] |
Bourne RR, Stevens GA, White RA, et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis[J]. Lancet Glob Health, 2013, 1(6): e339-e349.
|
[18] |
Tham YC, Li X, Wong TY, et al. Global Prevalence of glaucoma and projections of glaucoma burden through 2040 a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.
|
[19] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[20] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks (vol 542, pg 115, 2017)[J]. Nature, 2017, 546(7660): 686-686.
|
[21] |
Bejnordi EB, Veta M, Van Diest JP, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[J]. JAMA, 2017, 318(22): 2199-2210.
|
[22] |
张悦,初春燕,余双,等. 人工智能应用于青光眼临床筛查及卫生效益分析[J]. 现代生物医学进展,2020,20(10): 1868-1872.
|
[23] |
张悦,余双,马锴,等. 人工智能关于视盘区多任务深度学习模型在青光眼分类中的应用[J/CD]. 中华眼科医学杂志(电子版),2020,10(2): 70-75.
|
[24] |
Ko YC, Wey SY, Chen WT, et al. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model[J]. PLoS One, 2020, 15(5): e0233079.
|
[25] |
Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology[J]. Br J Ophthalmol, 2019, 103(2): 167-175.
|
[26] |
Yoo TK, Choi JY, Seo JG, et al. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment[J]. Med Biol Eng Comput, 2019, 57(3): 677-687.
|
[27] |
Lee J, Kim YK, Park KH, et al. Diagnosing glaucoma with spectral-domain optical coherence tomography using deep learning classifier[J]. J Glaucoma, 2020, 29(4): 287-294.
|
[28] |
Asaoka R, Murata H, Iwase A, et al. Detecting Preperimetric glaucoma with standard automated perimetry using a deep learning classifier[J]. Ophthalmology, 2016, 123(9): 1974-1980.
|
[29] |
Muhammad H, Fuchs T, De Cuir N, et al. Hybrid deep learning on single wide-field optical coherence tomography scans accurately classifies glaucoma suspects[J]. 2017, 26(12): 1086-1094.
|
[30] |
Ahn JM, Kim S, Ahn KS, et al. A deep learning model for the detection of both advanced and early glaucoma using fundus photography[J]. PLoS One, 2018, 13(11): e0207982.
|
[31] |
林浩添,吴晓航. 加快基于眼科图像数据库的眼病人工智能辅助诊断平台建设[J]. 中华实验眼科杂志,2018,36(8): 577-580.
|