切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2021, Vol. 11 ›› Issue (03) : 178 -182. doi: 10.3877/cma.j.issn.2095-2007.2021.03.009

综述

人工智能在视网膜血管疾病诊断应用中的研究进展
安宁1, 马雪莹1, 白永杰2,(), 王海山3   
  1. 1. 471003 洛阳,河南科技大学医学部2017级本科生
    2. 471003 洛阳,河南科技大学第一附属医院神经内科
    3. 45000 郑州市第三人民医院眼科
  • 收稿日期:2020-10-26 出版日期:2021-06-28
  • 通信作者: 白永杰
  • 基金资助:
    河南省医学科技攻关计划项目(201503207)

Advances on the artificial intelligence in diagnosis of retinal vascular disease

Ning An1, Xueying Ma1, Yongjie Bai2,(), Haishan Wang3   

  1. 1. Bachelor′s degree 2017, College of Medicine, Henan University of Science and Technology, Luoyang 471003, China
    2. Department of Neurology, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471003, China
    3. Department of Ophthalmology, the Third People′s Hospital of Zhengzhou City, Zhengzhou 450003, China
  • Received:2020-10-26 Published:2021-06-28
  • Corresponding author: Yongjie Bai
引用本文:

安宁, 马雪莹, 白永杰, 王海山. 人工智能在视网膜血管疾病诊断应用中的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 178-182.

Ning An, Xueying Ma, Yongjie Bai, Haishan Wang. Advances on the artificial intelligence in diagnosis of retinal vascular disease[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2021, 11(03): 178-182.

近年来,人工智能(AI)在疾病诊断和治疗评估等方面发展迅速。有研究结果表明,糖尿病性视网膜病变的早期损害可通过视网膜的血管改变及时发现并预防。目前,应用AI技术可快速识别视网膜血管的改变,发现疾病的早期系统性损害。AI算法中的卷积神经网络(CNN)不仅能分割视网膜血管,鉴别出视网膜动静脉和视网膜微小血管,还能测量其厚度,这为糖尿病性视网膜病变的早期预测和预后提供了可能。

Currently, artificial intelligence (AI) is developing rapidly in disease diagnosis, detection and treatment. The early damage of diabetic retinopathy could be detected in time through the vascular changes of the retina. At present, the changes of retinal microvessels can be quickly identified and detected during the early systemic damage of this disease using AI technology. The convolutional neural network (CNN) of AI algorithm is capable of segmenting retinal vessels, identifying retinal arteries and veins and retinal vessels, and measuring their thickness, which provides a possibility to predict diabetic retinopathy at the first stage for patients and its prognosis.

[13]
Brown JM, Campbell JP, Beers A, et al. Automated diagnosis of disease in retinopathy of prematurity using deep convolutional neural networks[J]. JAMA Ophthalmology, 2018, 136(7): 803-810.
[14]
Mo J, Zhang L. Multi-level deep supervised networks for retinal vessel segmentation[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(12): 2181-2193.
[15]
Guo Y, Budak M, Ŝengür A. A novel retinal vessel detection approach based on multiple deep convolution neural networks[J]. Computer Methods and Programs in Biomedicine, 2018, 167(12): 43-48.
[16]
Yan Z, Yang X, Cheng KT. A three-stage deep learning model for accurate retinal vessel segmentation[J]. IEEE Journal of Biomedical Health Informatics, 2019, 23(4): 1427-1436.
[17]
Maloca PM, Lee AY, de Carvalho ER, et al. Validationof automated artificial intelligence segmentation ofoptical coherence tomographyimages[J]. PLoS One, 2019, 14(8): e0220063.
[18]
Zhou L, Yu Q, Xu X, et al. Improving dense conditional random field for retinal vessel segmentation by discriminative feature learning and thin-vessel enhancement[J].Computer Methods and Programs in Biomedicine, 2017, 148(9): 13-25.
[19]
Noh KJ, Park SJ, Lee S. Scale-space approximated convolutional neural networks for retinal vessel segmentation[J]. Computer Methods and Programs in Biomedicine, 2019, 178(9): 237-246.
[20]
Hua CH, Huynh TT, Lee S. Retinal vessel segmentation using round-wise features aggregation on bracket-shaped convolutional neural networks[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Berlin, Germany: IEEE, 2019: 36-39.
[21]
Shin SY, Lee S, Yun ID, et al. Deep vessel segmentation by learning graphical connectivity[J]. Medical Image Analysis, 2019, 58(12): 101556.
[23]
Chudzik P, Al-Diri B, Caliva F, et al. DISCERN: Generative framework for vessel segmentation using convolutional neural network and visual codebook[J]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2018, 7: 5934-5937.
[24]
Grisan E, Ruggeri A. A divide et impera strategy for automated classifification of retinal vessels into arteries and veins[C]//25th International Conference of the IEEE Engineering in Medicine and Biology Society. Cancun, Mexico: IEEE, 2003: 890-893.
[25]
Narasimha-Iyer H, Beach JM, Khoobehi B, et al. Algorithms for automated oximetry along the retinal, vascular tree from dual-wavelength fundus images[J]. Journal Biomedical Optics, 2015, 10(5): 54013.
[26]
Relan D, MacGillivray T, Ballerini L, et al. Automatic Retinal vessel classification using a Least Square-Support Vector Machinein VAMPIRE[C]//35th Annual International Conference of the IEEE EMBS Engineering in Medicine and Biology Society (EMBC). Chicago, USA: IEEE, 2014: 142-145.
[27]
Vijayakumar V, Koozekanani DD, White R, et al. Artery/vein classification of retinal blood vessels using feature selection[C]//Engineering in Medicine & Biology Society. Orlando, USA: IEEE, 2016: 1320-1323.
[28]
Huang F, Dashtbozorg B, Tan T, et al. Retinalartery vein classification using genetic-search feature selection[J]. Computer Methods Programs in Biomedicine, 2018, 161(7): 197-207.
[29]
Srinidhi CL, PA , Rajan J. Automated method for retinal artery/vein separation via graph search metaheuristic approach[J]. IEEE Transactions on Image Processing, 2019, 28(6):2705-2718.
[30]
Zhao Y, Xie J, Zhang H, et al. Retinal vascular network topology reconstruction and artery/vein classification via dominant set clustering[J]. IEEE Transactions On Medical Imaging, 2020, 39(2): 341-356.
[31]
Welikala RA, Foster PJ, Whincup PH, et al. Automated arteriole and venule classification using deep learning for retinal images from the UK biobank cohort[J]. Computers in Biology and Medicine, 2017, 90(11): 23-32.
[32]
Badawi SA, Fraz MM. Multiloss function based deep convolutional neural network for segmentation of retinal vasculature into arterioles and venules[J]. Biomed Research International, 2019, 14(4): 4747230.
[33]
Zhao H, Sun Y, Li H. Retinal vascular junction detection and classification via deep neural networks[J]. Computer Methods and Programs in Biomedicine, 2020, 183(1): 105096.
[34]
Huang F, Tan T, Dashtbozorg B, et al. From local to global: a graph framework for retinal artery/vein classification[J]. IEEE Transsactions on Nanobioscience, 2020, 19(4): 589-597.
[35]
Miere A, Capuano V, Kessler A, et al. Deeplearning-based classification of retinal atrophy using fundus autofluorescence imaging[J]. Computers in Biology and Medicine, 2020, 130(12): 104198.
[36]
Wong TY, Klein R, Klein BE, et al. Retinal microvascular abnormalities, and their relation to hypertension, cardiovascular diseases and mortality[J]. Survey of Ophthalmology, 2001, 46(1): 59-80.
[37]
Al-Diri B, Hunter A, Steel D. An active contour model for segmenting and measuring retinal vessels[J]. IEEE Transactions on Medical Imaging, 2009, 28(9): 1488-1497.
[38]
Araújo T, Mendona AM, Campilho A. Parametric model fitting-basedapproach for retinal blood vessel caliber estimation in eye fundus images[J]. PLoS One, 2018, 13(4): e0194702.
[39]
Mirsharif Q, Tajeripour F, Pourreza H. Automated character-ization of blood vessels as arteries and veins in retinal images[J] Computerized Medical Imaging and Graphics, 2013, 37(7-8): 607-617.
[40]
Girard F, Kavalec C, Cheriet F. Joint segmentation and classification of retinal arteries/veins from fundus images[J]. Artificiai Intelligence in Medicine, 2019, 94(3):96-109.
[41]
Ramachandran N, Hong SC, Sime MJ, et al. Diabetic retinopathy screening using deep neural network[J]. Clinical and Experimental Ophthalmology, 2018, 46(4): 412-416.
[42]
Abràmoff MD, Folk JC, Han DP, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy[J]. JAMA Ophthalmology, 2013, 131(3): 351-357.
[43]
Abramoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning[J]. Investigative Ophthalmology & Visual Science, 2016, 57(13): 5200-5206.
[44]
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Artificial intelligence in retina[J]. Progress in Retinal and Eye Research, 2018, 67(11): 1-29.
[45]
Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ Digital Medicine, 2018, 1(1): 39.
[46]
de Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referralin retinal disease[J]. Nature Medicine, 2018, 24(9): 1342-1350.
[47]
Padhy SK, Takkar B, Chawla R, et al. Artificial intelligence in diabetic retinopathy:A natural step to the future[J]. Indian Journal of Ophthalmology, 2019, 67(7): 1004-1009.
[48]
Gallart J, Puig D, Valls A. Diabetic retinopathy detection using deep convolutional neural networks[C]// 19 th International Conference of the Catalan Association for Artificial Intelligence. Barcelona: CCIA, 2016: 261-266.
[49]
Xu K, Feng D, Mi H. Deep convolutional neural networkbased early automated detection of diabetic retinopathy using fundus image[J]. Molecules, 2017, 22(12):2054.
[50]
Sangeethaa SN, Uma MP. An intelligent model for blood vessel segmentation in diagnosing DR using CNN[J]. Journal of Medical Systems, 2018, 42(10):175.
[51]
Porwal P, Pachade S, Kokare M, et al. IDRiD: Diabetic retinopathy——segmentation and grading challenge[J]. Medical Image Analysis, 2020, 59(1): 101561.
[1]
Horton MB, Silva PS, Cavallerano JD, et al. Clinical components of telemedicine programs for diabetic retinopathy[J]. Current Diabetes Reports, 2016, 16(12): 129-134.
[2]
Varma R, Vajaranant TS, Burkemper B, et al. Visual impairment and blindness in adults in the United States: Demographic and geographic variations from 2015 to 2050[J]. JAMA Ophthalmology, 2016, 134(7): 802-809.
[3]
Das A. Diabetic retinopathy: battling the global epidemic[J]. Indian Journal of Ophthalmology, 2016, 64(1): 2-3.
[4]
Guo Y, Budak Ü,,Vespa LJ, et al. A retinal vessel detection approach using convolution neural network with reinforcement sample learning strategy[J]. Measurement, 2018, 125(3): 586-591.
[5]
Zhao Y, Rada L, Chen K, et al. Automated vessel segmentation using infinite perimeter active contour model with hybrid regioninformation with application to retinal images[J]. IEEE Transactions On Medical Imaging, 2015, 34(9): 1797-1807.
[6]
SilKar S, Maity SP. Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy[J]. Computer Methods and Programs in Biomedicine, 2016, 133(9): 111-132.
[7]
SilKar S, Maity SP. Blood vessel extraction and optic disc removal using curvelet transform and kernel fuzzy c-means[J]. Computers In Biology And Medicine, 2016, 70(3):174-189.
[8]
Khan KB, Siddique MS, Ahmad M, et al. A hybrid unsupervised approach for retinal vessel segmentation[J]. Biomed Researh International, 2020, 11(2):8365783.
[9]
Hashemzadeh M, Adlpour-Azar B. Retinal blood vessel extraction employing effective image features and combination of supervised and unsupervised machine learning methods[J]. Artificial Intelligence In Medicine, 2019, 95(4): 1-15.
[10]
Khawaja A, Khan TM, Khan MAU, et al. A multi-scale directional line detector for retinal vessel segmentation[J]. Sensors (Basel), 2019, 19(22): 4949.
[11]
Maninis KK, Pont-Tuset J, Arbeláez P, et al. Deep retinal image understanding[M]. Switzerland: Springer International Publishing, 2016: 140-148.
[12]
Avijit D, Sonam S. A Fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation[C]//2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). Melbourne, Australia: IEEE, 2017: 248-251.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 张辉, 蔡敏, 黄湘雅. 数字化技术和人工智能在上颌窦底提升术的临床应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 244-252.
[6] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[7] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[8] 胡博文, 戴英波. 泌尿外科机器人手术新趋势[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 418-421.
[9] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[10] 邢晓伟, 刘雨辰, 王明刚. 人工智能技术在疝和腹壁外科领域的应用及展望[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 390-393.
[11] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[12] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[13] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[14] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[15] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
阅读次数
全文


摘要