切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (03) : 183 -187. doi: 10.3877/cma.j.issn.2095-2007.2022.03.011

综述

年龄相关性黄斑变性的研究进展
王宛婷1, 梁婷2, 孙蕾2,()   
  1. 1. 150000 哈尔滨医科大学附属第四医院眼科2019级硕士研究生
    2. 150000 哈尔滨医科大学附属第四医院眼科
  • 收稿日期:2021-07-16 出版日期:2022-06-28
  • 通信作者: 孙蕾
  • 基金资助:
    黑龙江省自然科学基金项目(JJ2021LH1412); 哈尔滨医科大学附属第四医院科技创新人才项目(HYDSYKJCXRC202132)

Research progress in the age-related macular degeneration

Wanting Wang1, Ting Liang2, Lei Sun2,()   

  1. 1. Master′s degree 2019, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
    2. Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150000, China
  • Received:2021-07-16 Published:2022-06-28
  • Corresponding author: Lei Sun
引用本文:

王宛婷, 梁婷, 孙蕾. 年龄相关性黄斑变性的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 183-187.

Wanting Wang, Ting Liang, Lei Sun. Research progress in the age-related macular degeneration[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(03): 183-187.

年龄相关性黄斑变性(AMD)又称为老年性黄斑变性,是一种与年龄相关,视功能不可逆性损伤的致盲性眼病。近年来,随着我国老龄化现象日益严重,AMD的患病率不断上升;加之,AMD当前的抗新生血管疗法和光动力疗法属于被动治疗,缺乏预防治疗手段,其疗效的持久性也欠佳。因此,本文中笔者对AMD的病因、发病机制及治疗的基础理论研究进展进行综述,旨在为AMD的预防、治疗及改善预后提供参考。

Age-related macular degeneration (AMD) also known as senile macular degeneration, is a kind of blindness caused by age-related and irreversible damage to visual function. With the aging problem becoming more and more serious in China, the incidence of AMD is on the rise. At present, there is still a lack of effective treatment for visual function damage caused by AMD. Conventional anti-neovascularization therapy and photodynamic therapy have practical problems such as passive therapy, insufficience of prevention methods and lasting curative effect. Therefore, the basic theory of etiology, pathology and pharmacological effects of therapeutic drugs of AMD are summarized and discussed in this paper, aiming to effectively prevent the occurrence and progress of AMD, or improve prognosis.

图1 湿性老年性黄斑变性患者光学相干断层扫描血管成像 图A示脉络膜毛细血管层血管成像,脉络膜层可见新生血管(红色箭头所指);图B示视网膜光学相干平扫成像,可见血流信号,患者视网膜结构破坏视网膜色素上皮层隆起,血流信号不规则(黄色箭头所指);图C示视网膜表层血管密度,可见黄斑中心凹区血流密度为17%;图D示全层视网膜厚度(内界膜层-视网膜色素上皮层),黄斑中心凹视网膜厚度增厚462 μm
[1]
Reibaldi M, Longo A, Pulvirenti A, et al. Geo-epidemiology of age-related macular degeneration: new clues into the pathogenesis[J]. Am J Ophthalmol, 2016, 161: 78-93.
[2]
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Glob Health, 2014, 2(2): e106-e116.
[3]
戴虹,卢颖毅. 全面评估抗血管内皮生长因子药物治疗新生血管性老年性黄斑变性的影响因素,努力提高治疗效果的综合收益[J]. 中华眼底病杂志201632(1):8-11.
[4]
Nashine S, Cohen P, Chwa M, et al. Humanin G (HNG) protects age-related macular degeneration (AMD) transmito-chondrial ARPE-19 cybrids from mitochondrial and cellular damage[J]. Cell Death Dis, 2017, 8(7): e2951.
[5]
Blasiak J, Piechota M, Pawlowska E, et al. Cellular senescence in age-related macular degeneration: can autophagy and DNA damage response play a role? [J]. Oxid Med Cell Longev, 2017: 5293258.
[6]
Golestaneh N, Chu Y, Xiao YY, et al. Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration[J]. Cell Death Dis, 2017, 8(1): e2537.
[7]
Blasiak J, Pawlowska E, Chojnacki J, et al. Zinc and autophagy in age-related macular degeneration[J]. Int J Mol Sci, 2020, 21(14): 4994.
[8]
Kauppinen A, Paterno JJ, Blasiak J,et al. Inflammation and its role in age-related macular degeneration[J]. Cell Mol Life Sci, 2016, 73(9): 1765-1786.
[9]
孙创斌,胡晋红,朱全刚,等. 药物作用新靶点:白细胞介素17及其受体[J]. 国际药学研究杂志200835(3):169-172.
[10]
Sun Q, Gong L, Qi R, et al. Oxidative stress-induced KLF4 activates inflammatory response through IL17RA and its downstream targets in retinal pigment epithelial cells[J]. Free Radic Biol Med, 2020, 147: 271-281.
[11]
Apte RS. Regulation of angiogenesis by macrophages[J]. Adv Exp Med Biol, 2010, 664: 15-19.
[12]
Ferrington DA, Kapphahn RJ, Leary MM, et al. Increased retinal mtDNA damage in the CFH variant associated with age-related macular degeneration[J]. Exp Eye Res2016, 145: 269-277.
[13]
Shaw PX, Zhang L, Zhang M, et al. Complement factor H genotypes impact risk of age-related macular degeneration by interaction with oxidized phospholipids[J]. Proc Natl Acad Sci U S A, 2012, 109(34): 13757-13762.
[14]
Cipriani V, Lorés-Motta L, He F, et al. Increased circulating levels of factor H-related protein 4 are strongly associated with age-related macular degeneration[J]. Nat Commun, 2020, 11(1): 778.
[15]
Zeng R, Zhang X, Wu K, et al. MMP9 gene polymorphism is not associated with polypoidal choroidal vasculopathy and neovascular age-related macular degeneration in a Chinese Han population[J]. Ophthalmic Genet, 2014, 35(4): 235-240.
[16]
Akagi-Kurashige Y, Yamashiro K, Gotoh N, et al. MMP20 and ARMS2/HTRA1 are associated with neovascular lesion size in age-related macular degeneration[J]. Ophthalmology, 2015, 122(11): 2295-2302.
[17]
Csuka D, Munthe-Fog L, Skjoedt MO, et al. The role of ficolins and MASPs in hereditary angioedema due to C1-inhibitor deficiency[J]. Mol Immunol, 2013, 54(3-4): 271-277.
[18]
赵永吉,丁秋爱,游志鹏. 老年性黄斑变性免疫炎症机制的研究进展[J]. 眼科新进展2017(11):85-88.
[19]
Falk MK, Singh A, Faber C, et al. CX3CL1/CX3CR1 and CCL2/CCR2 chemokine/chemokine receptor complex in patients with AMD[J]. PLoS One, 2014, 9(12): e112473.
[20]
Karali M, Persico M, Mutarelli M, et al. High-resolution analysis of the human retina miRNome reveals isomiR variations and novel microRNAs[J]. Nucleic Acids Res2016, 44(4): 1525-1540.
[21]
Blasiak J, Watala C, Tuuminen R, et al. Expression of VEGFA-regulating miRNAs and mortality in wet AMD[J]. J Cell Mol Med, 2019, 23(12): 8464-8471.
[22]
Stanton CM, Chalmers KJ, Wright AF. The chromosome 10q26 susceptibility locus in age-related macular degeneration[J]. Adv Exp Med Biol, 2012, 723: 365-370.
[23]
García-Layana A, Cabrera-López F, García-Arumí J, et al. Early and intermediate age-related macular degeneration: update and clinical review[J]. Clin Interv Aging, 2017, 12: 1579-1587.
[24]
Thakkinstian A, Han P, McEvoy M, et al. Systematic review and meta-analysis of the association between complement factor H Y402H polymorphisms and age-related macular degeneration[J]. Hum Mol Genet, 2006, 15(18): 2784-2790.
[25]
Erke MG, Bertelsen G, Peto T, et al. Lactation, female hormones and age-related macular degeneration: the Troms Study[J]. Br J Ophthalmol, 2013, 97(8): 1036-1039.
[26]
冯俊英. 年龄相关性黄斑变性与CFH基因突变相关性的研究[D]. 大连:大连医科大学,2007.
[27]
戴青,高自清.新生血管性老年性黄斑变性的危险因素及治疗进展[J]. 临床眼科杂志201826(1):91-94.
[28]
Adams MK, Chong EW, Williamson E, et al. 20/20—alcohol and age-related macular degeneration: the Melbourne Collaborative Cohort Study[J]. Am J Epidemiol, 2012, 176(4): 289-298.
[29]
Sui GY, Liu GC, Liu GY, et al. Is sunlight exposure a risk factor for age-related macular degeneration: A systematic review and meta-analysis[J]. Br J Ophthalmol, 2013, 97(4): 389-394.
[30]
Xu L. Associated factors for age related maculopathy in the adult population in China: the Beijing eye study[J]. Br J Ophthalmol, 2006, 90(9): 1087-1090.
[31]
Holz FG, Piguet B, Minassian DC, et al. Decreasing stromal iris pigmentation as a risk factor for age-related macular degeneration[J]. Am J Ophthalmol, 1994, 117: 19-23.
[32]
Dasari B, Prasanthi JR, Marwarha G, et al. Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina[J]. BMC Ophthalmol, 2011: 11-22.
[33]
Choi J, Moon JW, Shin HJ. Chronic kidney disease, early age-related macular degeneration, and peripheral retinal drusen[J]. Ophthalmic Epidemiol, 2011, 18(6): 259-263.
[34]
许毓鹏,杜宇辰,陈凤娥.视网膜血管性疾病光学相干断层成像图像的自动分层研究[J]. 上海交通大学学报(医学版)201939(6):613-621.
[35]
Farecki ML, Gutfleisch M, Faatz H, et al. Exsudative AMD in der OCT-Angiografie[J]. Klinische Monatsbltter Für Augenhlkunde, 2017, 234(9): 1119-1124.
[36]
Schmidt-Erfurth U, Klimscha S, Waldstein SM, et al. A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration[J]. Eye (Lond), 2017, 31(1): 26-44.
[37]
Jung JJ, Chen CY, Mrejen S, et al. The incidence of neovascular subtypes in newly diagnosed neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2014, 158(4): 769-779.
[38]
Yannuzzi LA, Negrão S, Iida T, et al. Retinal angiomatous proliferation in age-related macular degeneration[J]. Retina, 2012, 32(1): 416-434.
[39]
龚静文,蒋劲,王秋,等. 不同影像学检查在湿性老年性黄斑变性诊断、分型中的特点比较[J].浙江医学201941(10):998-1001,1006,1111-1112.
[40]
Su Y, Wu J, Gu Y. Photodynamic therapy in combination with ranibizumab versus ranibizumab monotherapy for wet age-related macular degeneration: A systematic review and meta-analysis[J]. Photodiagnosis Photodyn Ther, 2018, 22: 263-273.
[41]
蔡锡安,彭惠.两种抗VEGF药物治疗渗出性年龄相关性黄斑病变的疗效[J]. 国际眼科杂志201616(8):1501-1503.
[42]
Bakri SJ, Thorne JE, Ho AC, et al. Safety and efficacy of anti-vascular endothelial growth factor therapies for neovascular age-related macular degeneration: a report by the American Academy of Ophthalmology[J]. Ophthalmology, 2019, 126(1): 55-63.
[43]
连海燕,宋艳萍,丁琴. 玻璃体腔注射雷珠单抗治疗渗出型老年性黄斑变性患眼随访2年终末视力与基线特征相关性观察[J]. 中华眼底病杂志201733(1): 40-43.
[44]
罗曼,陈晓隆. 新生血管性年龄相关性黄斑变性患者玻璃体内注射抗血管内皮生长因子药物治疗进展[J]. 眼科新进展202040(6):582-586.
[45]
史丽艳. 玻璃体腔注射康柏西普在湿性老年性黄斑变性治疗中的应用研究[J]. 中国医药指南202018(1):41-42.
[46]
Vavvas DG, Daniels AB, Kapsala ZG, et al. Regression of some high-risk features of age-related macular degeneration (AMD) in patients receiving intensive statin treatment[J]. EbioMedicine, 2016, 5: 198-203.
[47]
Nashine S, Subramaniam SR, Chwa M, et al. PU-91 drug rescues human age-related macular degeneration RPE cells, implications for AMD therapeutics[J]. Aging, 2019, 11(17): 6691-6713.
[48]
Akyol E, Gene LA. Cell and antibody-based therapies for the treatment of age-related macular degeneration[J]. Biologics2020, 14: 83-94.
[49]
Weiss JN, Levy S. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of age-related macular degeneration[J]. Medicines, 2020, 7(4): 16.
[50]
徐曼. 老年性黄斑变性药物治疗的研究进展[D]. 石家庄:河北医科大学,2019.
[51]
Holz FG, Dugel PU, Weissgerber G, et al. Single-Chain antibody fragment VEGF inhibitor RTH258 for neovascular age-related macular degeneration: A randomized controlled study[J]. Ophthalmology, 2016, 123(5): 1080-1089.
[52]
Hussain RM, Ciulla TA. Emerging vascular endothelial growth factor antagonists to treat neovascular age-related macular degeneration[J]. Expert Opin Emerg Drugs, 2017, 22(3): 235-246.
[53]
Nazio F, Strappazzon F, Antonioli M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6[J]. Nat Cell Biol, 2013, 15(4): 406-416.
[54]
Crooke A, Huete-Toral F, Colligris B, et al. The role and therapeutic potential of melatonin in age-related ocular diseases[J]. J Pineal Res, 2017, 63(2): 12430.
[55]
杨思宇,刘学勤,杨腊梅.湿性老年性黄斑变性患者生活质量及其影响因素[J].中国老年学杂志202141(18):4134-4138.
[56]
林晓明,马乐,窦宏亮,等. 叶黄素对视功能及相关疾病的预防与控制研究[C]. 杭州:中国营养学会第十一次全国营养科学大会暨国际DRIs研讨会,2013:235-236.
[1] 中华医学会骨科学分会关节外科学组, 广东省医学会骨质疏松和骨矿盐疾病分会, 广东省佛山市顺德区第三人民医院. 中国髋部脆性骨折术后抗骨质疏松药物临床干预指南(2023年版)[J]. 中华关节外科杂志(电子版), 2023, 17(06): 751-764.
[2] 许正文, 李振, 侯振扬, 苏长征, 朱彪. 富血小板血浆联合植骨治疗早期非创伤性股骨头坏死[J]. 中华关节外科杂志(电子版), 2023, 17(06): 773-779.
[3] 李培杰, 乔永杰, 张浩强, 曾健康, 谭飞, 李嘉欢, 王静, 周胜虎. 细菌培养阴性的假体周围感染诊治的最新进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 827-833.
[4] 王宏宇. 固定与活动平台假体在全膝关节置换术中的应用价值[J]. 中华关节外科杂志(电子版), 2023, 17(06): 871-876.
[5] 李善武, 叶永杰, 王兵, 王子呓, 银毅, 孙官军, 张大刚. 胫骨高位截骨与单髁置换的早期疗效比较[J]. 中华关节外科杂志(电子版), 2023, 17(06): 882-888.
[6] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[7] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[8] 陈垚, 徐伯群, 高志慧. 改良式中间上入路根治术治疗甲状腺癌的有效性安全性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 619-622.
[9] 孔博, 张璟, 吕珂. 超声技术在复杂腹壁疝诊治中的作用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 670-673.
[10] 姜明, 罗锐, 龙成超. 闭孔疝的诊断与治疗:10年73例患者诊疗经验总结[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 706-710.
[11] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[12] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[13] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[14] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[15] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
阅读次数
全文


摘要