切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2018, Vol. 08 ›› Issue (06) : 270 -275. doi: 10.3877/cma.j.issn.2095-2007.2018.06.005

所属专题: 人工智能 文献

综述

人工智能技术溯源、医学应用及其在眼科前节疾病的应用现状与展望
杨倩1, 刘万阳2, 吕世华1, 曲利军1,()   
  1. 1. 150086 哈尔滨医科大学附属第二医院眼科
    2. 150086 哈尔滨医科大学医学史教研室
  • 收稿日期:2018-11-08 出版日期:2018-12-28
  • 通信作者: 曲利军
  • 基金资助:
    黑龙江省自然科学基金面上项目(H2013105)

Development of artificial intelligence technology, medical application and its application status and prospect in anterior ocular segment diseases

Qian Yang1, Wanyang Liu2, Shihua Lu1, Lijun Qu1,()   

  1. 1. Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
    2. Department of Medical History, Harbin Medical University, Harbin 150086, China
  • Received:2018-11-08 Published:2018-12-28
  • Corresponding author: Lijun Qu
  • About author:
    Correspondence author: Qu Lijun, Email:
引用本文:

杨倩, 刘万阳, 吕世华, 曲利军. 人工智能技术溯源、医学应用及其在眼科前节疾病的应用现状与展望[J]. 中华眼科医学杂志(电子版), 2018, 08(06): 270-275.

Qian Yang, Wanyang Liu, Shihua Lu, Lijun Qu. Development of artificial intelligence technology, medical application and its application status and prospect in anterior ocular segment diseases[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2018, 08(06): 270-275.

近年来人工智能飞速发展,为许多领域带来技术上的革新。它在医学领域也表现出了极大的发展潜力,人工智能辅助下对某些疾病影像的判读与诊断,表现出出色的特异性和准确性可以媲美人类专家。而眼科是一门高度依赖影像学检查的学科,如眼底照相、光学相干断层扫描(OCT)、角膜地形图等都适合进行机器学习。因此,许多学者致力于人工智能在眼科领域应用的研究。目前,大多数研究都集中于视网膜疾病,而对眼前节疾病研究尚少,故笔者拟对人工智能在眼前节疾病中的应用现状进行综述。

The rapid development of artificial intelligencein recent years has brought technological innovation to many fields. Artificial intelligence has shown great potential in the field of medicine. The specificity and accuracy of image interpretation and diagnosis assisted by artificial intelligence in some areas of diseases are comparable to human experts. Ophthalmology is a highly imaging-depended subject, such as fundus photography, optical coherence tomography, corneal topography, and so on, which is suitable for machine learning. Therefore many scholars are devoted to the application of artificial intelligence in ophthalmology. At present, most studies focus on retinal diseases. However in outpatient work, the number of patients with anterior ocular segment diseases is far more than that of patients with fundus diseases. This article aims to review the application of artificial intelligence in anterior ocular segment diseases.

[1]
Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology[J]. British Journal of Ophthalmology, 2018, 25: 313173.
[2]
殷建平,祝恩,刘越,等. 人工智能:一种现代的方法[M]. 3版. 北京:清华大学出版社,2013:3-28.
[3]
Rahimy, Ehsan. Deep learning applications in ophthalmology[J]. Current Opinion in Ophthalmology, 2018, 29(3): 254-260.
[4]
Hogarty DT, Mackey DA, Hewitt AW, et al. Current state and future prospects of artificial intelligence in ophthalmology: a review[J]. Clinical & Experimental Ophthalmology, 2018: 1-29.
[5]
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Progress in Retinal and Eye Research[J]. Prog Retin Eye Res, 2018, 67: 1-29.
[6]
Morrell RL, Wasilauskas B, WinslowR.Expert systems[J]. American Journal of Hospital Pharmacy, 1994, 51(16): 2022-2030.
[7]
Yu VL, Fagan LM, Wraith SM, et al. Antimicrobial Selection by a Computer: A Blinded Evaluation by Infectious Diseases Experts[J]. Jama, 1979, 242(12): 1279-1282.
[8]
Samuel AL. Some studies in machine learning using the game of checkers[J]. Ibm Journal of Research and Development, 1959, 44(1): 206-226.
[9]
JuneGoo L, Sanghoon J, Young-Won C, et al. Deep Learning in Medical Imaging: General Overview[J]. Korean Journal of Radiology, 2017, 18(4): 570-584.
[10]
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[11]
Lecun YL, Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[12]
Lakhani P, Prater A, Hutson RK, et al. Machine Learning in Radiology: Applications Beyond Image Interpretation[J]. Journal of The American College of Radiology, 2017, 15(2): 350-359.
[13]
Pesapane F, Codari M, Sardanelli F, et al. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine[J]. 2018, 2(1): 35.
[14]
Becker AS, Marcon M, Ghafoor S, et al. Deep Learning in Mammography: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer[J]. Investigative Radiology, 2017, 52(7): 434-440.
[15]
Yang Y, Feng X, Chi W, et al. Deep learning aided decision support for pulmonary nodules diagnosing: a review[J]. Journal of Thoracic Disease, 2018, 10(7): 867-875.
[16]
Mizuho N, Osamu S, Masahiro Y, et al. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning[J]. PLOS ONE, 2018, 13(7): e0200721
[17]
Perezramirez U, Arana E, Moratal D, et al. Computer-aided detection of brain metastases using a three-dimensional template-based matching algorithm[C]. international conference of the ieee engineering in medicine and biology society, 2014: 2384-2387.
[18]
Bhagyashree SI, Nagaraj K, Prince M, et al. Diagnosis of Dementia by Machine learning methods in Epidemiological studies: a pilot exploratory study from south India[J]. Social Psychiatry and Psychiatric Epidemiology, 2018, 53(1): 77-86.
[19]
Yong X, Shihui C, Jing Q, et al. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey[J]. Contrast Media & Molecular Imaging, 2017: 1-10.
[20]
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer[J]. Jama, 2017, 318(22): 2199-2210.
[21]
Somashekhar SP, Sepúlveda MJ, Puglielli S, et al. Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board[J]. Annals of Oncology, 2018, 29(2): 418-423.
[22]
Song Y, Zhang YD, Yan X, et al. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI[J]. Journal of Magnetic Resonance Imaging, 2018, 48(6): 1570-1577.
[23]
Ciompi F, Chung K, Van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning[J]. Scientific Reports, 2017, 7: 46479.
[24]
Alagappan M, Brown JRG, Mori Y, et al. Artificial intelligence in gastrointestinal endoscopy: The future is almost here[J]. World Journal of Gastrointestinal Endoscopy, 2018, 10(10): 239-249.
[25]
Slomka PJ, Dey D, Sitek A, et al. Cardiac Imaging: Working Towards Fully-Automated Machine Analysis & Interpretation[J]. Expert Review of Medical Devices, 2017, 14(3): 197-212.
[26]
Kang D, Dey D, Slomka PJ, et al. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography[J]. Journal of medical imaging, 2015, 2(1): 014003.
[27]
Wolterink JM, Leiner T, De Vos BD, et al. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks[J]. Medical Image Analysis, 2016, 34: 123-136.
[28]
Motwani M, Dey D, Berman DS, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis[J]. European Heart Journal, 2017, 38(7): 500-507.
[29]
Weng SF, Jenna R, Joe K, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data?[J]. PLOS ONE, 2017, 12(4): e0174944.
[30]
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
[31]
Han SS, Kim MS, Lim W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm[J]. Journal of Investigative Dermatology, 2018, 138(7): 1529-1538.
[32]
Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis[J]. Scientific Reports, 2016, 6: 26286.
[33]
Cruz AS, Lins HC, Medeiros RVA , et al. Artificial intelligence on the identification of risk groups for osteoporosis, a general review[J]. BioMedical Engineering OnLine, 2018, 17(1): 12.
[34]
Tur VM, Macgregor C, Jayaswal R, et al. A review of keratoconus: Diagnosis, pathophysiology, and genetics[J]. Survey of Ophthalmology, 2017, 62(6): 770-783.
[35]
杨洋,蒋爱民.圆锥角膜的分类与早期诊断[J/CD]. 中华眼科医学杂志(电子版), 2015,5(4): 213-218.
[36]
Henein C, Nanavaty MA. Systematic review comparing penetrating keratoplasty and deep anterior lamellar keratoplasty for management of keratoconus[J]. Contact Lens and Anterior Eye, 2017, 40(1): 3-14.
[37]
Maeda N, Klyce SD, Smolek MK, et al. Automated keratoconus screening with corneal topography analysis[J]. Invest Ophthalmol Vis Sci, 1994, 35(6): 2749-2757.
[38]
Souza MB, Medeiros FW, Souza DB, et al. Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations[J]. Clinics(Sao Paulo), 2010, 65: 1223-1228.
[39]
Smadja D, Touboul D, Cohen A, et al. Detection of Subclinical Keratoconus Using an Automated Decision Tree Classification[J]. American Journal of Ophthalmology, 2013, 156(2): 237-246.
[40]
Hidalgo IR, Rodriguez P, Rozema JJ, et al. Evaluation of machine-learning classifier for keratoconus detection based on scheimpflug tomography[J]. Cornea, 2016, 35(6): 827-832.
[41]
Ruiz Hidalgo I, Rozema JJ, Saad A, et al. Validation of an Objective Keratoconus Detection System Implemented in a Scheimpflug Tomographer and Comparison With Other Methods[J]. Cornea, 2017, 36(6): 689-695.
[42]
Kovacs I, Mihaltz K, Kranitz K, et al. Accuracy of machine learning classifiers using bilateral data from Schiempflug camera for identifying eyes with preclinical signs of keratoconus[J]. Journal of Cataract & Refractive Surgery, 2016, 42(2): 275-283.
[43]
Montalt JC, Porcar E, Espanagregori E, et al. Visual quality with corneo-scleral contact lenses after intracorneal ring segment (ICRS) implantation for keratoconus management[J]. Contact Lens and Anterior Eye, 2018, 41(2): 46-51.
[44]
Lyra D, Ribeiro G, Torquetti L, et al. Computational Models for Optimization of the Intrastromal Corneal Ring Choice in Patients With Keratoconus Using Corneal Tomography Data[J]. Journal of Refractive Surgery, 2018, 34(8): 547-550.
[45]
Gazzard G, Saw SM, Farook M, et al. Pterygium in Indonesia: prevalence, severity and risk factors[J]. British Journal of Ophthalmology, 2002, 86(12): 1341-1346.
[46]
Tomidokoro A, Miyata K, Sakaguchi Y, et al. Effects of pterygium on corneal spherical power and astigmatism[J]. Ophthalmology, 2000, 107(8): 1568-1571.
[47]
Kuo IC, Muthappan V, Wang X. Conjunctival autograft for pterygium[J]. Cochrane Database of Systematic Reviews, 2016, 2(2): CD011349.
[48]
Zaki WM, Daud MM, Abdani SR, et al. Automated pterygium detection method of anterior segment photographed images[J]. Computer Methods and Programs in Biomedicine, 2018: 71-78.
[49]
Gao X, Wong DW, Aryaputera AW, et al. Automatic pterygium detection on cornea images to enhance computer-aided cortical cataract grading system[C]. international conference of the ieee engineering in medicine and biology society, 2012: 4434-4437.
[50]
Mesquita RG, Figueiredo EMN. An algorithm for measuring pterygium's progress in already diagnosed eyes[C]. IEEE International Conference on Acoustics, 2012: 733-736.
[51]
Gupta D, Chen PP. Glaucoma[J]. American Family Physician, 2016, 93(8): 668-674.
[52]
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.
[53]
Song P, Wang J, Bucan K, et al. National and subnational prevalence and burden of glaucoma in China: A systematic analysis[J]. Journal of Global Health, 2017, 7(2): 020705.
[54]
Vass C, Hirn C, Sycha T, et al.Medical interventions for primary open angle glaucoma and ocular hypertension[J]. Cochrane Database Syst Rev, 2007, 17(4): CD003167.
[55]
Mantravadi AV, Vadhar N. Glaucoma[J]. Primary Care, 2015, 42(3): 437-449.
[56]
张秀兰,李飞. 人工智能和青光眼:机遇和挑战[J].中华实验眼科杂志,2018,36(4): 245-247.
[57]
Chan K, Lee T, Sample PA, et al. Comparison of machine learning and traditional classifiers in glaucoma diagnosis[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(9): 963-974.
[58]
Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206.
[59]
Muhammad H, Fuchs TJ, De Cuir N, et al. Hybrid Deep Learning on Single Wide-field Optical Coherence Tomography Scans Accurately Classifies Glaucoma Suspects[J]. Journal of Glaucoma, 2017, 26(12): 1086-1094.
[60]
Kumar BN, Chauhan RP, Dahiya N. Detection of Glaucoma Using Image Processing Techniques: A Critique[J].Semin Ophthalmol, 2018, 33(2): 275-283.
[61]
Hood DC, De Cuir N, Blumberg DM, et al. A Single Wide-Field OCT Protocol Can Provide Compelling Information for the Diagnosis of Early Glaucoma[J]. Translational Vision Science & Technology, 2016, 5(6): 4.
[62]
Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances: clinical correlations[J]. Ophthalmology, 1996, 103(4): 640-649.
[63]
Omodaka K, An G, Tsuda S, et al. Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters[J]. PLoS One, 2017, 12(12): e0190012.
[64]
Kazemian P, Lavieri MS, Van Oyen MP, et al. Personalized prediction of glaucoma progression under different target intraocular pressure levels using filtered forecasting methods[J]. Ophthalmology, 2018, 125(4): 569-577.
[65]
Bai X, Niwas SI, Lin W, et al. Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis[J]. Journal of Medical Systems, 2016, 40(4): 1-10.
[66]
Haleem MS, Han L, Van Hemert J, et al. Regional Image Features Model for Automatic Classification between Normal and Glaucoma in Fundus and Scanning Laser Ophthalmoscopy (SLO) Images[J]. Journal of Medical Systems, 2016, 40(6): 1-19.
[67]
Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma[J]. PLoS One, 2017, 12(5): e0177726.
[68]
Ting DSW, Cheung CY, Lim G, et al.Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes[J]. JaMa, 2017, 318(22): 2211-2223.
[69]
Thompson J, Lakhani N. Cataracts[J]. Primary Care, 2015, 42(3): 409-423.
[70]
赵乾,沈琳琳,赖铭莹. 基于机器学习的人工智能技术在眼科中的应用进展[J].国际实验眼科杂志,2018,18(9): 1630-1634.
[71]
Yang M, Yang J, Zhang Q, et al. Classification of retinal image for automatic cataract detection[C]. IEEE International Conference on E-health Networking, 2013: 674-679.
[72]
Yang JJ, Li J, Shen R, et al. Exploiting ensemble learning for automatic cataract detection and grading[J]. Comput Methods Programs Biomed, 2016, 124: 45-57.
[73]
Gao X, Lin S, Wong TY. Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(11): 2693-2701.
[74]
Caixinha M, Amaro J, Santos M, et al. In-Vivo Automatic Nuclear Cataract Detection and Classification in an Animal Model by Ultrasounds[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(11): 2326-2335.
[75]
Gillner M, Eppig T, Langenbucher A, et al. Automatic intraocular lens segmentation and detection in optical coherence tomography images[J]. Zeitschrift Fur Medizinische Physik, 2014, 24(2): 104-111.
[76]
Liu X, Jiang J, Zhang K, et al. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network[J]. PLoS One, 2017, 12(3): e0168606.
[77]
Jiang J, Liu X, Liu L, et al. Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network[J]. PLoS One, 2018, 13(7): e0201142.
[78]
Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs[J]. Jama, 2016, 316(22): 2402-2410.
[79]
Gargeya R, Leng T. Automated Identification of Diabetic Retinopathy Using Deep Learning[J]. Ophthalmology, 2017, 124(7): 962-969.
[80]
Lee CS, Baughman DM, Lee AY. Deep Learning Is Effective for Classifying Normal versus Age-Related Macular Degeneration Optical CoherenceTomography Images[J]. Ophthalmology Retina, 2017, 2(4): 322-327.
[81]
Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning[J]. Graefes Archive for Clinical & Experimental Ophthalmology, 2018, 256(2): 259-265.
[82]
Lin H, Long E, Ding X, et al. prediction of myopia development among chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study[J]. PLoS Med, 2018, 15(11): e1002674.
[1] 张梅芳, 谭莹, 朱巧珍, 温昕, 袁鹰, 秦越, 郭洪波, 侯伶秀, 黄文兰, 彭桂艳, 李胜利. 早孕期胎儿头臀长正中矢状切面超声图像的人工智能质控研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 945-950.
[2] 杨菲菲, 林锡祥, 陈亦新, 王秋霜, 张丽伟, 陈煦, 张梅青, 王淑华, 何昆仑. 基于深度学习的超声心动图自动识别节段性室壁运动异常的研究[J]. 中华医学超声杂志(电子版), 2023, 20(04): 424-429.
[3] 唐玮, 何融泉, 黄素宁. 深度学习在乳腺癌影像诊疗和预后预测中的应用[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 323-328.
[4] 范帅华, 郭伟, 郭军. 基于机器学习的决策树算法在血流感染预后预测中应用现状及展望[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 289-293.
[5] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[6] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[7] 邢晓伟, 刘雨辰, 赵冰, 王明刚. 基于术前腹部CT的卷积神经网络对腹壁切口疝术后复发预测价值[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 677-681.
[8] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[9] 韩冰, 顾劲扬. 深度学习神经网络在肝癌诊疗中的研究及应用前景[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 480-485.
[10] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[11] 葛云鹏, 崔红元, 宋京海. 人工智能在原发性肝癌诊断、治疗及预后中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 367-371.
[12] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[13] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[14] 江卓婷, 高妍, 李春晖. 相干光断层扫描在角膜屈光手术术前筛查中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 247-251.
[15] 胡平, 鄢腾峰, 周海柱, 祝新根. 人工智能在非增强CT图像中颅内出血早期检出和血肿分割的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 410-416.
阅读次数
全文


摘要