[1] |
Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology[J]. British Journal of Ophthalmology, 2018, 25: 313173.
|
[2] |
殷建平,祝恩,刘越,等. 人工智能:一种现代的方法[M]. 3版. 北京:清华大学出版社,2013:3-28.
|
[3] |
Rahimy, Ehsan. Deep learning applications in ophthalmology[J]. Current Opinion in Ophthalmology, 2018, 29(3): 254-260.
|
[4] |
Hogarty DT, Mackey DA, Hewitt AW, et al. Current state and future prospects of artificial intelligence in ophthalmology: a review[J]. Clinical & Experimental Ophthalmology, 2018: 1-29.
|
[5] |
Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, et al. Progress in Retinal and Eye Research[J]. Prog Retin Eye Res, 2018, 67: 1-29.
|
[6] |
Morrell RL, Wasilauskas B, WinslowR.Expert systems[J]. American Journal of Hospital Pharmacy, 1994, 51(16): 2022-2030.
|
[7] |
Yu VL, Fagan LM, Wraith SM, et al. Antimicrobial Selection by a Computer: A Blinded Evaluation by Infectious Diseases Experts[J]. Jama, 1979, 242(12): 1279-1282.
|
[8] |
Samuel AL. Some studies in machine learning using the game of checkers[J]. Ibm Journal of Research and Development, 1959, 44(1): 206-226.
|
[9] |
JuneGoo L, Sanghoon J, Young-Won C, et al. Deep Learning in Medical Imaging: General Overview[J]. Korean Journal of Radiology, 2017, 18(4): 570-584.
|
[10] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[11] |
Lecun YL, Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[12] |
Lakhani P, Prater A, Hutson RK, et al. Machine Learning in Radiology: Applications Beyond Image Interpretation[J]. Journal of The American College of Radiology, 2017, 15(2): 350-359.
|
[13] |
Pesapane F, Codari M, Sardanelli F, et al. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine[J]. 2018, 2(1): 35.
|
[14] |
Becker AS, Marcon M, Ghafoor S, et al. Deep Learning in Mammography: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer[J]. Investigative Radiology, 2017, 52(7): 434-440.
|
[15] |
Yang Y, Feng X, Chi W, et al. Deep learning aided decision support for pulmonary nodules diagnosing: a review[J]. Journal of Thoracic Disease, 2018, 10(7): 867-875.
|
[16] |
Mizuho N, Osamu S, Masahiro Y, et al. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning[J]. PLOS ONE, 2018, 13(7): e0200721
|
[17] |
Perezramirez U, Arana E, Moratal D, et al. Computer-aided detection of brain metastases using a three-dimensional template-based matching algorithm[C]. international conference of the ieee engineering in medicine and biology society, 2014: 2384-2387.
|
[18] |
Bhagyashree SI, Nagaraj K, Prince M, et al. Diagnosis of Dementia by Machine learning methods in Epidemiological studies: a pilot exploratory study from south India[J]. Social Psychiatry and Psychiatric Epidemiology, 2018, 53(1): 77-86.
|
[19] |
Yong X, Shihui C, Jing Q, et al. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey[J]. Contrast Media & Molecular Imaging, 2017: 1-10.
|
[20] |
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer[J]. Jama, 2017, 318(22): 2199-2210.
|
[21] |
Somashekhar SP, Sepúlveda MJ, Puglielli S, et al. Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board[J]. Annals of Oncology, 2018, 29(2): 418-423.
|
[22] |
Song Y, Zhang YD, Yan X, et al. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI[J]. Journal of Magnetic Resonance Imaging, 2018, 48(6): 1570-1577.
|
[23] |
Ciompi F, Chung K, Van Riel SJ, et al. Towards automatic pulmonary nodule management in lung cancer screening with deep learning[J]. Scientific Reports, 2017, 7: 46479.
|
[24] |
Alagappan M, Brown JRG, Mori Y, et al. Artificial intelligence in gastrointestinal endoscopy: The future is almost here[J]. World Journal of Gastrointestinal Endoscopy, 2018, 10(10): 239-249.
|
[25] |
Slomka PJ, Dey D, Sitek A, et al. Cardiac Imaging: Working Towards Fully-Automated Machine Analysis & Interpretation[J]. Expert Review of Medical Devices, 2017, 14(3): 197-212.
|
[26] |
Kang D, Dey D, Slomka PJ, et al. Structured learning algorithm for detection of nonobstructive and obstructive coronary plaque lesions from computed tomography angiography[J]. Journal of medical imaging, 2015, 2(1): 014003.
|
[27] |
Wolterink JM, Leiner T, De Vos BD, et al. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks[J]. Medical Image Analysis, 2016, 34: 123-136.
|
[28] |
Motwani M, Dey D, Berman DS, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis[J]. European Heart Journal, 2017, 38(7): 500-507.
|
[29] |
Weng SF, Jenna R, Joe K, et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data?[J]. PLOS ONE, 2017, 12(4): e0174944.
|
[30] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
|
[31] |
Han SS, Kim MS, Lim W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm[J]. Journal of Investigative Dermatology, 2018, 138(7): 1529-1538.
|
[32] |
Litjens G, Sánchez CI, Timofeeva N, et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis[J]. Scientific Reports, 2016, 6: 26286.
|
[33] |
Cruz AS, Lins HC, Medeiros RVA , et al. Artificial intelligence on the identification of risk groups for osteoporosis, a general review[J]. BioMedical Engineering OnLine, 2018, 17(1): 12.
|
[34] |
Tur VM, Macgregor C, Jayaswal R, et al. A review of keratoconus: Diagnosis, pathophysiology, and genetics[J]. Survey of Ophthalmology, 2017, 62(6): 770-783.
|
[35] |
杨洋,蒋爱民.圆锥角膜的分类与早期诊断[J/CD]. 中华眼科医学杂志(电子版), 2015,5(4): 213-218.
|
[36] |
Henein C, Nanavaty MA. Systematic review comparing penetrating keratoplasty and deep anterior lamellar keratoplasty for management of keratoconus[J]. Contact Lens and Anterior Eye, 2017, 40(1): 3-14.
|
[37] |
Maeda N, Klyce SD, Smolek MK, et al. Automated keratoconus screening with corneal topography analysis[J]. Invest Ophthalmol Vis Sci, 1994, 35(6): 2749-2757.
|
[38] |
Souza MB, Medeiros FW, Souza DB, et al. Evaluation of machine learning classifiers in keratoconus detection from orbscan II examinations[J]. Clinics(Sao Paulo), 2010, 65: 1223-1228.
|
[39] |
Smadja D, Touboul D, Cohen A, et al. Detection of Subclinical Keratoconus Using an Automated Decision Tree Classification[J]. American Journal of Ophthalmology, 2013, 156(2): 237-246.
|
[40] |
Hidalgo IR, Rodriguez P, Rozema JJ, et al. Evaluation of machine-learning classifier for keratoconus detection based on scheimpflug tomography[J]. Cornea, 2016, 35(6): 827-832.
|
[41] |
Ruiz Hidalgo I, Rozema JJ, Saad A, et al. Validation of an Objective Keratoconus Detection System Implemented in a Scheimpflug Tomographer and Comparison With Other Methods[J]. Cornea, 2017, 36(6): 689-695.
|
[42] |
Kovacs I, Mihaltz K, Kranitz K, et al. Accuracy of machine learning classifiers using bilateral data from Schiempflug camera for identifying eyes with preclinical signs of keratoconus[J]. Journal of Cataract & Refractive Surgery, 2016, 42(2): 275-283.
|
[43] |
Montalt JC, Porcar E, Espanagregori E, et al. Visual quality with corneo-scleral contact lenses after intracorneal ring segment (ICRS) implantation for keratoconus management[J]. Contact Lens and Anterior Eye, 2018, 41(2): 46-51.
|
[44] |
Lyra D, Ribeiro G, Torquetti L, et al. Computational Models for Optimization of the Intrastromal Corneal Ring Choice in Patients With Keratoconus Using Corneal Tomography Data[J]. Journal of Refractive Surgery, 2018, 34(8): 547-550.
|
[45] |
Gazzard G, Saw SM, Farook M, et al. Pterygium in Indonesia: prevalence, severity and risk factors[J]. British Journal of Ophthalmology, 2002, 86(12): 1341-1346.
|
[46] |
Tomidokoro A, Miyata K, Sakaguchi Y, et al. Effects of pterygium on corneal spherical power and astigmatism[J]. Ophthalmology, 2000, 107(8): 1568-1571.
|
[47] |
Kuo IC, Muthappan V, Wang X. Conjunctival autograft for pterygium[J]. Cochrane Database of Systematic Reviews, 2016, 2(2): CD011349.
|
[48] |
Zaki WM, Daud MM, Abdani SR, et al. Automated pterygium detection method of anterior segment photographed images[J]. Computer Methods and Programs in Biomedicine, 2018: 71-78.
|
[49] |
Gao X, Wong DW, Aryaputera AW, et al. Automatic pterygium detection on cornea images to enhance computer-aided cortical cataract grading system[C]. international conference of the ieee engineering in medicine and biology society, 2012: 4434-4437.
|
[50] |
Mesquita RG, Figueiredo EMN. An algorithm for measuring pterygium's progress in already diagnosed eyes[C]. IEEE International Conference on Acoustics, 2012: 733-736.
|
[51] |
Gupta D, Chen PP. Glaucoma[J]. American Family Physician, 2016, 93(8): 668-674.
|
[52] |
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.
|
[53] |
Song P, Wang J, Bucan K, et al. National and subnational prevalence and burden of glaucoma in China: A systematic analysis[J]. Journal of Global Health, 2017, 7(2): 020705.
|
[54] |
Vass C, Hirn C, Sycha T, et al.Medical interventions for primary open angle glaucoma and ocular hypertension[J]. Cochrane Database Syst Rev, 2007, 17(4): CD003167.
|
[55] |
Mantravadi AV, Vadhar N. Glaucoma[J]. Primary Care, 2015, 42(3): 437-449.
|
[56] |
张秀兰,李飞. 人工智能和青光眼:机遇和挑战[J].中华实验眼科杂志,2018,36(4): 245-247.
|
[57] |
Chan K, Lee T, Sample PA, et al. Comparison of machine learning and traditional classifiers in glaucoma diagnosis[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(9): 963-974.
|
[58] |
Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs[J]. Ophthalmology, 2018, 125(8): 1199-1206.
|
[59] |
Muhammad H, Fuchs TJ, De Cuir N, et al. Hybrid Deep Learning on Single Wide-field Optical Coherence Tomography Scans Accurately Classifies Glaucoma Suspects[J]. Journal of Glaucoma, 2017, 26(12): 1086-1094.
|
[60] |
Kumar BN, Chauhan RP, Dahiya N. Detection of Glaucoma Using Image Processing Techniques: A Critique[J].Semin Ophthalmol, 2018, 33(2): 275-283.
|
[61] |
Hood DC, De Cuir N, Blumberg DM, et al. A Single Wide-Field OCT Protocol Can Provide Compelling Information for the Diagnosis of Early Glaucoma[J]. Translational Vision Science & Technology, 2016, 5(6): 4.
|
[62] |
Nicolela MT, Drance SM. Various glaucomatous optic nerve appearances: clinical correlations[J]. Ophthalmology, 1996, 103(4): 640-649.
|
[63] |
Omodaka K, An G, Tsuda S, et al. Classification of optic disc shape in glaucoma using machine learning based on quantified ocular parameters[J]. PLoS One, 2017, 12(12): e0190012.
|
[64] |
Kazemian P, Lavieri MS, Van Oyen MP, et al. Personalized prediction of glaucoma progression under different target intraocular pressure levels using filtered forecasting methods[J]. Ophthalmology, 2018, 125(4): 569-577.
|
[65] |
Bai X, Niwas SI, Lin W, et al. Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis[J]. Journal of Medical Systems, 2016, 40(4): 1-10.
|
[66] |
Haleem MS, Han L, Van Hemert J, et al. Regional Image Features Model for Automatic Classification between Normal and Glaucoma in Fundus and Scanning Laser Ophthalmoscopy (SLO) Images[J]. Journal of Medical Systems, 2016, 40(6): 1-19.
|
[67] |
Kim SJ, Cho KJ, Oh S. Development of machine learning models for diagnosis of glaucoma[J]. PLoS One, 2017, 12(5): e0177726.
|
[68] |
Ting DSW, Cheung CY, Lim G, et al.Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes[J]. JaMa, 2017, 318(22): 2211-2223.
|
[69] |
Thompson J, Lakhani N. Cataracts[J]. Primary Care, 2015, 42(3): 409-423.
|
[70] |
赵乾,沈琳琳,赖铭莹. 基于机器学习的人工智能技术在眼科中的应用进展[J].国际实验眼科杂志,2018,18(9): 1630-1634.
|
[71] |
Yang M, Yang J, Zhang Q, et al. Classification of retinal image for automatic cataract detection[C]. IEEE International Conference on E-health Networking, 2013: 674-679.
|
[72] |
Yang JJ, Li J, Shen R, et al. Exploiting ensemble learning for automatic cataract detection and grading[J]. Comput Methods Programs Biomed, 2016, 124: 45-57.
|
[73] |
Gao X, Lin S, Wong TY. Automatic Feature Learning to Grade Nuclear Cataracts Based on Deep Learning[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(11): 2693-2701.
|
[74] |
Caixinha M, Amaro J, Santos M, et al. In-Vivo Automatic Nuclear Cataract Detection and Classification in an Animal Model by Ultrasounds[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(11): 2326-2335.
|
[75] |
Gillner M, Eppig T, Langenbucher A, et al. Automatic intraocular lens segmentation and detection in optical coherence tomography images[J]. Zeitschrift Fur Medizinische Physik, 2014, 24(2): 104-111.
|
[76] |
Liu X, Jiang J, Zhang K, et al. Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network[J]. PLoS One, 2017, 12(3): e0168606.
|
[77] |
Jiang J, Liu X, Liu L, et al. Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network[J]. PLoS One, 2018, 13(7): e0201142.
|
[78] |
Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs[J]. Jama, 2016, 316(22): 2402-2410.
|
[79] |
Gargeya R, Leng T. Automated Identification of Diabetic Retinopathy Using Deep Learning[J]. Ophthalmology, 2017, 124(7): 962-969.
|
[80] |
Lee CS, Baughman DM, Lee AY. Deep Learning Is Effective for Classifying Normal versus Age-Related Macular Degeneration Optical CoherenceTomography Images[J]. Ophthalmology Retina, 2017, 2(4): 322-327.
|
[81] |
Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning[J]. Graefes Archive for Clinical & Experimental Ophthalmology, 2018, 256(2): 259-265.
|
[82] |
Lin H, Long E, Ding X, et al. prediction of myopia development among chinese school-aged children using refraction data from electronic medical records: a retrospective, multicentre machine learning study[J]. PLoS Med, 2018, 15(11): e1002674.
|