[1] |
Tinaztepe ÖE, Ay M, Eser E: Nuclear and mitochondrial DNA of age-related cataract patients are susceptible to oxidative damage[J]. Curr Eye Res, 2016, 42(4): 583-588.
|
[2] |
Kyselova Z, Stefek M, Bauer V. Pharmacological prevention of diabetic cataract[J]. J Diabetes Complicat, 2004, 18(2): 129-140.
|
[3] |
Theodoropoulou S, Theodossiadis P, Samoli E, et al. The epidemiology of cataract: a study in Greece[J]. Acta Ophthalmol, 2015, 89(2): e167-e173.
|
[4] |
Mitroviĉ S, Kelava T, Alan Šucur, et al. Levels of selected aqueous humor mediators (IL-10, IL-17, CCL2, VEGF, FasL) in diabetic cataract[J]. Ocul Immunol Inflamm, 2018, 26(8): 1177-1188.
|
[5] |
Andreas P, Ursula SE. Diabetic cataract-pathogenesis, epidemiology and treatment[EB/OL]. [2019-03-24].
URL
|
[6] |
Ivers RQ, Cumming RG, Mitchell P, et al. Diabetes and risk of fracture[J]. Diabetes Care, 2001, 24(7): 1198-1203.
|
[7] |
Hamid S, Gul A, Hamid Q. Relationship of cytokines and AGE products in diabetic and non-diabetic patients with cataract[J]. Int J Health Sci, 2016, 10(4): 507-515.
|
[8] |
Otiti-Sengeri J, Colebunders R, Reynolds SJ, et al. Elevated inflammatory cytokines in aqueous cytokine profile in HIV-1 infected patients with cataracts in Uganda[J]. BMC Ophthalmol, 2018, 18(1): 12.
|
[9] |
Wong TY, Klein R, Sharrett AR, et al. Retinal arteriolar narrowing and risk of diabetes mellitus in middle-aged persons[J]. JAMA, 2002, 287(19): 2528-2533.
|
[10] |
Zoric L, Elekvlajic S, Jovanovic S, et al. Oxidative stress intensity in lens and aqueous depending on age-related cataract type and brunescense[J]. Eur J Ophthalmol, 2008, 18(5): 669-674.
|
[11] |
Fan H, Takahiro S, Masafumi O, et al. Expression of PCNA, ICAM-1, and vimentin in lens epithelial cells of cataract patients with and without type 2 diabetes[J]. Tokai J Exp Clin Med, 2012, 37(2): 51-56.
|
[12] |
Kim B, Kim SY, Chung SK. Changes in apoptosis factors in lens epithelial cells of cataract patients with diabetes mellitus[J]. J Cataract Refract Surg, 2012, 38(8): 1376-1381.
|
[13] |
Delcourt C, Cristol JP, Tessier F, et al. Risk factors for cortical, nuclear, and posterior subcapsular cataracts: the POLA study[J]. Am J Epidemiol, 2000, 151(5): 497-504.
|
[14] |
Saxena S, Mitchell P, Rochtchina E. Five-year incidence of cataract in older persons with diabetes and pre-diabetes[J]. Ophthalmic Epidemiol, 2004, 11(4): 271-277.
|
[15] |
Tan JSL, Jie JW, Mitchell P. Influence of diabetes and cardiovascular disease on the long-term incidence of cataract: the blue mountains eye study[J]. Ophthalmic Epidemiol, 2008, 15(5): 317-327.
|
[16] |
Nirmalan PK, Robin AL, Katz J, et al. Risk factors for age related cataract in a rural population of southern India: the aravind comprehen-sive eye study[J]. Br J Ophthalmol, 2004, 88(8): 989-994.
|
[17] |
Obrosova IG, Chung SSM, Kador PF. Diabetic cataracts: mechanisms and management[J]. Diabetes Metab Res Rev, 2010, 26(3): 172-180.
|
[18] |
AREDS Group. Risk factors associated with age-related nuclear and cortical cataract: a case-control study in the age-related eye disease study, AREDS Report No. 5[J]. Ophthalmology, 2001, 108(8): 1400-1408.
|
[19] |
冯小慧,陈文瑛. 醛糖还原酶的研究进展[J]. 海峡药学,2007,19(1): 64-65.
|
[20] |
Olofsson EM, Marklund SL, Behndig A. Enhanced diabetes-induced cataract in copper-zinc superoxide dismutasenull mice[J]. Investi Ophthalmol Vis Sci, 2009, 50(6): 2913-2918.
|
[21] |
Kanth VR, Lavanya K, Srinivas J, et al. Elevated expression of indoleamine 2, 3-dioxygenase (IDO) and accumulation of kynurenic acid in the pathogenesis of STZ-induced diabetic cataract in Wistar rats[J]. Curr Eye Res, 2009, 34(4): 274-281.
|
[22] |
Sybille F, Jens D, Jürgen S, et al, Increased levels of advanced glycation end products in human cataractous lenses[J]. J Cataract Refract Surg 2003, 29(5): 998-1004.
|
[23] |
Obrosova IG. Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications[J]. Antioxid Redox Signal, 2005, 7(11-12): 1543-1552.
|
[24] |
Hashim Z, Zarina S. Antioxidant markers in human senile and diabetic cataractous lenses[J]. Coll Physicians Surg Pak, 2006, 16(10) : 637-640.
|
[25] |
Dong N, Xu B, Wang B, et al. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy[J]. Mol Vis, 2013, 19(1623): 1734-1746.
|
[26] |
Antunica AG, Znaor L, Sapunar A, et al. IL-12 concentrations in the aqueous humor and serum of diabetic retinopathy patients[J]. Graef Arch Clin Exp, 2012, 250(6): 815-821.
|
[27] |
Funatsu H, Yamashita H, Noma H, et al. Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients[J]. Graefes Arch Clin Exp Ophthalmol, 2005, 243(1): 3-8.
|
[28] |
Hideharu F, Hidetoshi Y, Hidetaka N, et al. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema[J]. Am J Ophthalmol, 2002, 133(1): 70-77.
|
[29] |
Kwak N, Okamoto N, Wood JM, et al. VEGF is major stimulator in model of choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2000, 41(10): 3158-3164.
|
[30] |
Funatsu H, Yamashita H, Sakata K, et al. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema[J]. Dkgest World Latest Med Inform, 2005, 112(5): 806-816.
|
[31] |
In Kyung O, Seong-Woo K, Jaeryung O, et al. Inflammatory and angiogenic factors in the aqueous humor and the relationship to diabetic retinopathy[J]. Current Eye Res, 2010, 35(12): 1116-1127.
|
[32] |
Okamura N, Ito Y, Shibata MA, et al. Fas-mediated apoptosis in human lens epithelial cells of cataracts associated with diabetic retinopathy[J]. Med Electron Mic, 2002, 35(4): 234-241.
|
[33] |
Shentu X, Yao K, Sun C, et al. Expression and effect of basic fibroblast growth factor on human cataract lens epithelial cells[J]. Chinese Med J, 2002, 115(2): 268-271.
|
[34] |
Marzena D, Ewa KA, Anna WO, et al. Statins in low doses reduce VEGF and bFGF serum levels in patients with type 2 diabetes mellitus[EB/OL]. [2019-03-24].
URL
|
[35] |
Liu YF, Liu HW. Differences of bFGF gene expression in lens epithelial cells between fetuses and cataract patients[J]. Int J Ophthalmol, 2010, 3(1): 58-61.
|
[36] |
Sampathkumar R, Mcguire PG, Arup D. Diabetic retinopathy and inflammation: novel therapeutic targets[J]. Middle East Afr J Ophthalmol, 2012, 19(1): 52-59.
|
[37] |
Miao H, Tao Y, Li X. Inflammatory cytokines in aqueous humor of patients with choroidal neovascularization[J]. Mol Vis, 2012, 18(18): 574-580.
|
[38] |
Dong N, Xu B, Wang B, et al. Study of 27 aqueous humor cytokines in patients withtype 2 diabetes with or without retinopathy[J]. Mol Vis, 2013, 19(1623): 1734-1746.
|
[39] |
Zhu D, Yang DY, Guo YY, et al. Intracameral interleukin 1β,6, 8, 10, 12p, tumor necrosis factor α and vascular endothelial growth factor and axial length in patients with cataract[EB/OL]. [2019-03-24].
URL
|
[40] |
IHiroshi I, Nozomu M, Masamitsu S, et al. Proliferative diabetic retinopathy and Relationsamong antioxidant activity, oxidative stress, and VEGF in the vitreousbody[J]. Mol Vis, 2010, 16(16): 130-136.
|
[41] |
Izuta H, Chikaraishi Y, Adachi T, et al. Extracellular SOD and VEGF are increased in vitreous bodies from proliferative diabetic retinopathy patients[J]. Mol Vis, 2009, 15(283): 2663-2672
|
[42] |
李自强,何引章,陶勇. 细胞因子检测方法研究进展及其在眼内液检测中的应用[J]. 中华眼科医学杂志(电子版), 2018, 8(3): 140-144.
|
[43] |
Wiemer NG, Dubbelman M, Kostense PJ, et al. The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens[J]. Ophthalmology, 2008, 115(10): 1679-1686.
|
[44] |
Karim AK, Jacob TJ, Thompson GM. The human anterior lens capsule: cell density, morphology and mitotic index in normal and cataractous lenses[J]. Exp Eye Res, 1987, 45(6): 870-874.
|
[45] |
Tseng SH, Yen JS, Chien HL. Lens epithelium in senile cataract[J]. J Formos Med Assoc, 1994, 93(2): 93-98.
|
[46] |
Hass C, Kohlmann H, Lommatzsch PK. Morphologic changes in the lens epithelium in patients with age-induced cataract, radiation and steroid cataract and cataract following eye contusion[J]. Ophthalmologe, 1995, 92(5): 741-744.
|
[47] |
李凤鸣,谢立信. 中华眼科学[M]. 北京:人民卫生出版社,2014.
|
[48] |
Nishi O, Nishi K, Akaishi T, et al. Detection of cell adhesion molecules in lens epithelial cells of human cataracts[J]. Invest Ophthalmol Vis Sci, 1997, 38(3): 579-585.
|
[49] |
Videm V, Albrigtsen M. Soluble ICAM-1 and VCAM-1 as markers of endothelial activation[J]. Scand J Immunol, 2010, 67(5): 523-531.
|
[50] |
Tang LQ, Ni WJ, Cai M, et al. The renoprotective effects of berberine and its potential impact on the expression of β-arrestins and ICAM-1/VCAM-1 in streptozocin induced-diabetic nephropathy rats[J]. J Diabetes, 2015, 8(5): 693-700.
|
[51] |
Khalfaoui T, Lizard G, Ouertani-Meddeb A. Adhesion molecules (ICAM-1 and VCAM-1) and diabetic retinopathy in type 2 diabetes[J]. J Mol Histol, 2008, 39(2): 243-249.
|
[52] |
Uĝurlu N, Gerceker S, Yülek F, et al. The levels of the circulating cellular adhesion molecules ICAM-1, VCAM-1 and endothelin-1 and the flow-mediated vasodilatation values in patients with type 1 diabetes mellitus with early-stage diabetic retinopathy[J]. Intern Med, 2013, 52(19): 2173-2178.
|
[53] |
Noda K, Nakao S, Ishida S, et al. Leukocyte adhesion molecules in diabetic retinopathy[J]. J Ophthalmol, 2012, 2012(2): 101-112.
|
[54] |
Das A, Mcguire PG, Rangasamy S. Diabetic Macular Edema: pathophysiology and novel therapeutic targets[J]. Ophthalmology, 2015, 122(7): 1375-1394.
|
[55] |
Pedro RA, Marc BB, Alicia PR, et al. Diabetic macular edema pathophysiology: Vasogenic versus Inflammatory[J]. J Diabetes Res, 2016, 2016(2): 1-17.
|
[56] |
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Ophthalmology,2007, 114(11): 2098-2099.
|
[57] |
Comer GM, Ciulla TA. Pharmacotherapy for diabetic retinopathy[J]. Curr Opin Ophthalmol, 2004, 15(6): 508-518.
|
[58] |
Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: The distinct role of protein kinase C and mitochondrial superoxide production[J]. Atherosclerosis, 2005, 183(2): 259-267.
|
[59] |
Blum A, Pastukh N, Socea D, et al. Levels of adhesion molecules in peripheral blood correlat with stages of diabetic retinopathy and may serve as bio markers for microvascular complications[J]. Cytokine, 2018, 106: 76-79.
|
[60] |
Joussen AM, Murata T, Tsujikawa A, et al. Leukocyte-mediated endothelial cell injury and death in the diabetic retina[J]. Am J Pathol, 2001, 158(1): 147-152.
|
[61] |
Abcouwer SF. Angiogenic factors and cytokines in diabetic retinopathy[J]. J Clin Cell Immunol, 2013, S1(11): 1-12.
|
[62] |
Semeraro F, Cancarini A, dell′Omo R, et al. Diabetic retinopathy: vascular and inflammatory disease[J]. J Diabetes Res, 2015, 2015: 1-16.
|
[63] |
Holekamp NM, Shui YB, Beebe D. Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract[J]. Am J Ophthalmol, 2006, 141(6): 1027-1032.
|
[64] |
Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies[J]. Diabetes Care 2003, 26(9): 2653-2664.
|
[65] |
Kubo E, Kumamoto Y, Tsuzuki S, et al. Axial length, myopia, and the severity of lens opacity at the time of cataract surgery[J]. Arch Ophthalmol, 2006, 124(11): 1586-1590.
|
[66] |
Holekamp NM, Harocopos GJ, Shui Y, et al. Myopia and axial length contribute to vitreous liquefaction and nuclear cataract[EB/OL].[2019-03-24].
URL
|
[67] |
Zhu X, Zhou P, Zhang K, et al. Epigenetic regulation of αA-crystallin in high myopia-induced dark nuclear cataract[J]. PLoS ONE, 2013, 8(12): e81900.
|