切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (05) : 312 -319. doi: 10.3877/cma.j.issn.2095-2007.2019.05.008

论著

糖尿病合并白内障及单纯老年性白内障与房水中细胞因子相关性的临床研究
汪晓娟1, 虹霏1, 杨大勇1, 朱丹1,(), 陶勇2   
  1. 1. 010050 呼和浩特,内蒙古医科大学附属医院眼科
    2. 100020 首都医科大学附属北京朝阳医院眼科
  • 收稿日期:2019-01-14 出版日期:2019-10-28
  • 通信作者: 朱丹
  • 基金资助:
    国家自然科学基金项目(81860178,81560165); 国家高技术研究发展计划(2015AA020949); 北京朝阳医院"1351人才培养计划"(CYXX-2017-21)

The relationship between cytokine level in aqueous humor and diabetes mellitus with cataract and age-related cataract

Xiaojuan Wang1, Fei Hong1, Dayong Yang1, Dan Zhu1,(), Yong Tao2   

  1. 1. Department of Ophthalmology, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
    2. Department of Ophthalmology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China
  • Received:2019-01-14 Published:2019-10-28
  • Corresponding author: Dan Zhu
引用本文:

汪晓娟, 虹霏, 杨大勇, 朱丹, 陶勇. 糖尿病合并白内障及单纯老年性白内障与房水中细胞因子相关性的临床研究[J]. 中华眼科医学杂志(电子版), 2019, 09(05): 312-319.

Xiaojuan Wang, Fei Hong, Dayong Yang, Dan Zhu, Yong Tao. The relationship between cytokine level in aqueous humor and diabetes mellitus with cataract and age-related cataract[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(05): 312-319.

目的

探讨糖尿病合并白内障及单纯老年性白内障与房水中细胞因子的相关性。

方法

收集2017年10月至2018年2月在内蒙古医科大学附属医院接受白内障手术治疗49例患者(49只眼)的临床资料。其中,男性22例(22只眼),女性27例(27只眼),平均年龄(64.4±9.7)岁。依据患者是否患有糖尿病,分为实验1组和实验2组。其中,糖尿病合并白内障患者14例(14只眼)为实验1组;单纯老年性白内障患者35例(35只眼)为实验2组。所有患者白内障术中收集房水。采用细胞因子微球技术检测患者血清及房水中白细胞介素-8(IL-8)、白细胞介素-10(IL-10)、血管内皮生长因子(VEGF)、血管细胞粘附分子-1(VCAM-1)及成纤维细胞生长因子(bFGF)的浓度,酶联免疫吸附试验检测人血管内皮细胞生长因子B(VEGF-B)和胎盘生长因子(PLGF)的浓度。采用Spearman相关分析评价两组房水中各细胞因子浓度与晶状体皮质混浊、核性混浊及后囊下混浊的相关性。

结果

实验1组和2组患者房水中IL-8、IL-10、VEGF、BFGF、VCAM-1、PLGF、VEGF-B浓度分别为(31.69±27)pg/ml、(5.2±0.41)pg/ml、(47.27±20.58)pg/ml、(17.28±4.11)pg/ml、(416.5±310.66)pg/ml、(17.85±6.70)pg/ml、(65.54±26.89)pg/ml、(12.38±6.52)pg/ml、(3.7±2.13)pg/ml、(36.54±14.97)pg/ml、(17.43±4.33)pg/ml、(331.39±205.80)pg/ml、(22.21±17.47)pg/ml及(74.36±26.75)pg/ml。实验1组房水中VCAM-1浓度与晶状体核性混浊呈负相关(r=-0.61,P<0.05)。实验1组和2组患者血清中各细胞因子与晶状体核性混浊无相关性(r=-0.03,-0.10,0.26,0.04,-0.32,-0.19;P均>0.05)、(r=-0.15,0.13,-0.15,-0.11,0.11,-0.18;P均>0.05)、(r=0.21,0.53,0.20,0.13,-0.12,0.16;P均>0.05)、(r=-0.06,0.03,-0.01,-0.20,0.09,0.20;P均>0.05)、(r=0.39,0.02,-0.11,-0.20,-0.13,0.03;P均>0.05)及(r=0.13,0.09,0.32,0.25,0.11,-0.10;P均>0.05)。

结论

两组房水中细胞因子与白内障之间规律不同。糖尿病患者房水中VCAM-1的浓度与晶状体的核性混浊呈负相关,VCAM-1可能是核性白内障的保护性因素。

Objective

This study was aim to investigate the changes of factors in aqueous humor of diabetes mellitus with cataract, and to analyze their relationship with cataract of diabetic patients.

Methods

Clinical data of 49 patients (49 eyes) receiving cataract surgery in the affiliated hospital of Inner Mongolia Medical University from October 2017 to February 2018 were collected, including 14 patients (14 eyes) with diabetes mellitus with cataract as the experimental group and 35 patients (35 eyes) with simple senile cataract as the cataract group. Among of the experimental group, the age was 54 to 75, the average age was (64.8±10.7). Among of the cataract group, the age was 55 to 72, the average age was (64.0±8.8). All the patients conduct preoperative collection of fasting venous blood and intraoperative collection of aqueous humor. Using cytometric bead array to detect vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), interleukin-8 (IL-8), interleukin-10 (IL-10) and vascular cell adhesion molecule-1 (VCAM-1) and using enzyme-linked immuno-sorbent assay to detect vascular endothelial growth factor B (VEGF-B) and placental growth factor (PLGF). Spearman′s rank correlation coefficient was used to detect the correlation aqueous humour levels of IL-8, IL-10, VEGF, bFGF, PLGF, VCAM-1 and VEGF-B with cortical opacity, nuclear opacity and posterior subcapsular opacity in both groups. Spearman′s rank correlation coefficient was also used to detect the correlation serum levels of IL-8, IL-10, VEGF, bFGF, VCAM-1 and VEGF-B with cortical opacity, nuclear opacity and posterior subcapsular opacity between two groups.

Results

The aqueous humor concentrations of IL-8, IL-10, VEGF, BFGF, VCAM-1, PLGF and VEGF-B in the experimental 1 and 2 group were (31.69±27)pg/ml, (5.2±0.41) pg/ml, (47.27±20.58) pg/ml, (17.28±4.11) pg/ml, (416.5±310.66) pg/ml, (17.85±6.70) pg/ml, (65.54±26.89) pg/ml, (12.38±6.52) pg/ml, (3.7±2.13) pg/ml, (36.54±14.97) pg/ml, (17.43±4.33) pg/ml, (331.39±205.80) pg/ml, (22.21±17.47) pg/ml, (74.36±26.75) pg/ml, respectively. The concentration of VCAM-1 in aqueous humor was negatively correlated with nuclear opacity in the experimental 1 group (r=-0.61, P<0.05). The concentration of all factors in serum was not correlated with nuclear opacity in the experimental 2 group (r=-0.03, -0.10, 0.26, 0.04, -0.32, -0.19; P>0.05), (r=-0.15, 0.13, -0.15, -0.11, 0.11, -0.18; P>0.05), (r=0.21, 0.53, 0.20, 0.13, -0.12, 0.16; P>0.05), (r=-0.06, 0.03, -0.01, -0.20, 0.09, 0.20; P>0.05), (r=0.39, 0.02, -0.11, -0.20, -0.13, 0.03; P>0.05) and (r=0.13, 0.09, 0.32, 0.25, 0.11, -0.10; P>0.05).

Conclusion

The concentration of VCAM-1 in aqueous humor of diabetic patients was negatively correlated with the nuclear opacity, and VCAM-1 may act as a protective factor for nuclear cataract.

图1 实验1组中房水血管细胞粘附分子-1的浓度与晶状体核性混浊的箱式图 1~3依次代表晶状体的混浊程度,数值越大代表加重越明显
表1 两组房水中各细胞因子浓度与白内障分期的相关性结果
表2 两组房水中各细胞因子浓度的比较( ±s,pg/ml)
表3 两组血清中各细胞因子浓度与白内障分期的相关性结果
[1]
Tinaztepe ÖE, Ay M, Eser E: Nuclear and mitochondrial DNA of age-related cataract patients are susceptible to oxidative damage[J]. Curr Eye Res, 2016, 42(4): 583-588.
[2]
Kyselova Z, Stefek M, Bauer V. Pharmacological prevention of diabetic cataract[J]. J Diabetes Complicat, 2004, 18(2): 129-140.
[3]
Theodoropoulou S, Theodossiadis P, Samoli E, et al. The epidemiology of cataract: a study in Greece[J]. Acta Ophthalmol, 2015, 89(2): e167-e173.
[4]
Mitroviĉ S, Kelava T, Alan Šucur, et al. Levels of selected aqueous humor mediators (IL-10, IL-17, CCL2, VEGF, FasL) in diabetic cataract[J]. Ocul Immunol Inflamm, 2018, 26(8): 1177-1188.
[5]
Andreas P, Ursula SE. Diabetic cataract-pathogenesis, epidemiology and treatment[EB/OL]. [2019-03-24].

URL    
[6]
Ivers RQ, Cumming RG, Mitchell P, et al. Diabetes and risk of fracture[J]. Diabetes Care, 2001, 24(7): 1198-1203.
[7]
Hamid S, Gul A, Hamid Q. Relationship of cytokines and AGE products in diabetic and non-diabetic patients with cataract[J]. Int J Health Sci, 2016, 10(4): 507-515.
[8]
Otiti-Sengeri J, Colebunders R, Reynolds SJ, et al. Elevated inflammatory cytokines in aqueous cytokine profile in HIV-1 infected patients with cataracts in Uganda[J]. BMC Ophthalmol, 2018, 18(1): 12.
[9]
Wong TY, Klein R, Sharrett AR, et al. Retinal arteriolar narrowing and risk of diabetes mellitus in middle-aged persons[J]. JAMA, 2002, 287(19): 2528-2533.
[10]
Zoric L, Elekvlajic S, Jovanovic S, et al. Oxidative stress intensity in lens and aqueous depending on age-related cataract type and brunescense[J]. Eur J Ophthalmol, 2008, 18(5): 669-674.
[11]
Fan H, Takahiro S, Masafumi O, et al. Expression of PCNA, ICAM-1, and vimentin in lens epithelial cells of cataract patients with and without type 2 diabetes[J]. Tokai J Exp Clin Med, 2012, 37(2): 51-56.
[12]
Kim B, Kim SY, Chung SK. Changes in apoptosis factors in lens epithelial cells of cataract patients with diabetes mellitus[J]. J Cataract Refract Surg, 2012, 38(8): 1376-1381.
[13]
Delcourt C, Cristol JP, Tessier F, et al. Risk factors for cortical, nuclear, and posterior subcapsular cataracts: the POLA study[J]. Am J Epidemiol, 2000, 151(5): 497-504.
[14]
Saxena S, Mitchell P, Rochtchina E. Five-year incidence of cataract in older persons with diabetes and pre-diabetes[J]. Ophthalmic Epidemiol, 2004, 11(4): 271-277.
[15]
Tan JSL, Jie JW, Mitchell P. Influence of diabetes and cardiovascular disease on the long-term incidence of cataract: the blue mountains eye study[J]. Ophthalmic Epidemiol, 2008, 15(5): 317-327.
[16]
Nirmalan PK, Robin AL, Katz J, et al. Risk factors for age related cataract in a rural population of southern India: the aravind comprehen-sive eye study[J]. Br J Ophthalmol, 2004, 88(8): 989-994.
[17]
Obrosova IG, Chung SSM, Kador PF. Diabetic cataracts: mechanisms and management[J]. Diabetes Metab Res Rev, 2010, 26(3): 172-180.
[18]
AREDS Group. Risk factors associated with age-related nuclear and cortical cataract: a case-control study in the age-related eye disease study, AREDS Report No. 5[J]. Ophthalmology, 2001, 108(8): 1400-1408.
[19]
冯小慧,陈文瑛. 醛糖还原酶的研究进展[J]. 海峡药学200719(1): 64-65.
[20]
Olofsson EM, Marklund SL, Behndig A. Enhanced diabetes-induced cataract in copper-zinc superoxide dismutasenull mice[J]. Investi Ophthalmol Vis Sci, 2009, 50(6): 2913-2918.
[21]
Kanth VR, Lavanya K, Srinivas J, et al. Elevated expression of indoleamine 2, 3-dioxygenase (IDO) and accumulation of kynurenic acid in the pathogenesis of STZ-induced diabetic cataract in Wistar rats[J]. Curr Eye Res, 2009, 34(4): 274-281.
[22]
Sybille F, Jens D, Jürgen S, et al, Increased levels of advanced glycation end products in human cataractous lenses[J]. J Cataract Refract Surg 2003, 29(5): 998-1004.
[23]
Obrosova IG. Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications[J]. Antioxid Redox Signal, 2005, 7(11-12): 1543-1552.
[24]
Hashim Z, Zarina S. Antioxidant markers in human senile and diabetic cataractous lenses[J]. Coll Physicians Surg Pak, 2006, 16(10) : 637-640.
[25]
Dong N, Xu B, Wang B, et al. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy[J]. Mol Vis, 2013, 19(1623): 1734-1746.
[26]
Antunica AG, Znaor L, Sapunar A, et al. IL-12 concentrations in the aqueous humor and serum of diabetic retinopathy patients[J]. Graef Arch Clin Exp, 2012, 250(6): 815-821.
[27]
Funatsu H, Yamashita H, Noma H, et al. Aqueous humor levels of cytokines are related to vitreous levels and progression of diabetic retinopathy in diabetic patients[J]. Graefes Arch Clin Exp Ophthalmol, 2005, 243(1): 3-8.
[28]
Hideharu F, Hidetoshi Y, Hidetaka N, et al. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema[J]. Am J Ophthalmol, 2002, 133(1): 70-77.
[29]
Kwak N, Okamoto N, Wood JM, et al. VEGF is major stimulator in model of choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2000, 41(10): 3158-3164.
[30]
Funatsu H, Yamashita H, Sakata K, et al. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema[J]. Dkgest World Latest Med Inform, 2005, 112(5): 806-816.
[31]
In Kyung O, Seong-Woo K, Jaeryung O, et al. Inflammatory and angiogenic factors in the aqueous humor and the relationship to diabetic retinopathy[J]. Current Eye Res, 2010, 35(12): 1116-1127.
[32]
Okamura N, Ito Y, Shibata MA, et al. Fas-mediated apoptosis in human lens epithelial cells of cataracts associated with diabetic retinopathy[J]. Med Electron Mic, 2002, 35(4): 234-241.
[33]
Shentu X, Yao K, Sun C, et al. Expression and effect of basic fibroblast growth factor on human cataract lens epithelial cells[J]. Chinese Med J, 2002, 115(2): 268-271.
[34]
Marzena D, Ewa KA, Anna WO, et al. Statins in low doses reduce VEGF and bFGF serum levels in patients with type 2 diabetes mellitus[EB/OL]. [2019-03-24].

URL    
[35]
Liu YF, Liu HW. Differences of bFGF gene expression in lens epithelial cells between fetuses and cataract patients[J]. Int J Ophthalmol, 2010, 3(1): 58-61.
[36]
Sampathkumar R, Mcguire PG, Arup D. Diabetic retinopathy and inflammation: novel therapeutic targets[J]. Middle East Afr J Ophthalmol, 2012, 19(1): 52-59.
[37]
Miao H, Tao Y, Li X. Inflammatory cytokines in aqueous humor of patients with choroidal neovascularization[J]. Mol Vis, 2012, 18(18): 574-580.
[38]
Dong N, Xu B, Wang B, et al. Study of 27 aqueous humor cytokines in patients withtype 2 diabetes with or without retinopathy[J]. Mol Vis, 2013, 19(1623): 1734-1746.
[39]
Zhu D, Yang DY, Guo YY, et al. Intracameral interleukin 1β,6, 8, 10, 12p, tumor necrosis factor α and vascular endothelial growth factor and axial length in patients with cataract[EB/OL]. [2019-03-24].

URL    
[40]
IHiroshi I, Nozomu M, Masamitsu S, et al. Proliferative diabetic retinopathy and Relationsamong antioxidant activity, oxidative stress, and VEGF in the vitreousbody[J]. Mol Vis, 2010, 16(16): 130-136.
[41]
Izuta H, Chikaraishi Y, Adachi T, et al. Extracellular SOD and VEGF are increased in vitreous bodies from proliferative diabetic retinopathy patients[J]. Mol Vis, 2009, 15(283): 2663-2672
[42]
李自强,何引章,陶勇. 细胞因子检测方法研究进展及其在眼内液检测中的应用[J]. 中华眼科医学杂志(电子版), 2018, 8(3): 140-144.
[43]
Wiemer NG, Dubbelman M, Kostense PJ, et al. The influence of diabetes mellitus type 1 and 2 on the thickness, shape, and equivalent refractive index of the human crystalline lens[J]. Ophthalmology, 2008, 115(10): 1679-1686.
[44]
Karim AK, Jacob TJ, Thompson GM. The human anterior lens capsule: cell density, morphology and mitotic index in normal and cataractous lenses[J]. Exp Eye Res, 1987, 45(6): 870-874.
[45]
Tseng SH, Yen JS, Chien HL. Lens epithelium in senile cataract[J]. J Formos Med Assoc, 1994, 93(2): 93-98.
[46]
Hass C, Kohlmann H, Lommatzsch PK. Morphologic changes in the lens epithelium in patients with age-induced cataract, radiation and steroid cataract and cataract following eye contusion[J]. Ophthalmologe, 1995, 92(5): 741-744.
[47]
李凤鸣,谢立信. 中华眼科学[M]. 北京:人民卫生出版社,2014.
[48]
Nishi O, Nishi K, Akaishi T, et al. Detection of cell adhesion molecules in lens epithelial cells of human cataracts[J]. Invest Ophthalmol Vis Sci, 1997, 38(3): 579-585.
[49]
Videm V, Albrigtsen M. Soluble ICAM-1 and VCAM-1 as markers of endothelial activation[J]. Scand J Immunol, 2010, 67(5): 523-531.
[50]
Tang LQ, Ni WJ, Cai M, et al. The renoprotective effects of berberine and its potential impact on the expression of β-arrestins and ICAM-1/VCAM-1 in streptozocin induced-diabetic nephropathy rats[J]. J Diabetes, 2015, 8(5): 693-700.
[51]
Khalfaoui T, Lizard G, Ouertani-Meddeb A. Adhesion molecules (ICAM-1 and VCAM-1) and diabetic retinopathy in type 2 diabetes[J]. J Mol Histol, 2008, 39(2): 243-249.
[52]
Uĝurlu N, Gerceker S, Yülek F, et al. The levels of the circulating cellular adhesion molecules ICAM-1, VCAM-1 and endothelin-1 and the flow-mediated vasodilatation values in patients with type 1 diabetes mellitus with early-stage diabetic retinopathy[J]. Intern Med, 2013, 52(19): 2173-2178.
[53]
Noda K, Nakao S, Ishida S, et al. Leukocyte adhesion molecules in diabetic retinopathy[J]. J Ophthalmol, 2012, 2012(2): 101-112.
[54]
Das A, Mcguire PG, Rangasamy S. Diabetic Macular Edema: pathophysiology and novel therapeutic targets[J]. Ophthalmology, 2015, 122(7): 1375-1394.
[55]
Pedro RA, Marc BB, Alicia PR, et al. Diabetic macular edema pathophysiology: Vasogenic versus Inflammatory[J]. J Diabetes Res, 2016, 2016(2): 1-17.
[56]
Cheung N, Mitchell P, Wong TY. Diabetic retinopathy[J]. Ophthalmology2007, 114(11): 2098-2099.
[57]
Comer GM, Ciulla TA. Pharmacotherapy for diabetic retinopathy[J]. Curr Opin Ophthalmol, 2004, 15(6): 508-518.
[58]
Quagliaro L, Piconi L, Assaloni R, et al. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: The distinct role of protein kinase C and mitochondrial superoxide production[J]. Atherosclerosis, 2005, 183(2): 259-267.
[59]
Blum A, Pastukh N, Socea D, et al. Levels of adhesion molecules in peripheral blood correlat with stages of diabetic retinopathy and may serve as bio markers for microvascular complications[J]. Cytokine, 2018, 106: 76-79.
[60]
Joussen AM, Murata T, Tsujikawa A, et al. Leukocyte-mediated endothelial cell injury and death in the diabetic retina[J]. Am J Pathol, 2001, 158(1): 147-152.
[61]
Abcouwer SF. Angiogenic factors and cytokines in diabetic retinopathy[J]. J Clin Cell Immunol, 2013, S1(11): 1-12.
[62]
Semeraro F, Cancarini A, dell′Omo R, et al. Diabetic retinopathy: vascular and inflammatory disease[J]. J Diabetes Res, 2015, 2015: 1-16.
[63]
Holekamp NM, Shui YB, Beebe D. Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract[J]. Am J Ophthalmol, 2006, 141(6): 1027-1032.
[64]
Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies[J]. Diabetes Care 2003, 26(9): 2653-2664.
[65]
Kubo E, Kumamoto Y, Tsuzuki S, et al. Axial length, myopia, and the severity of lens opacity at the time of cataract surgery[J]. Arch Ophthalmol, 2006, 124(11): 1586-1590.
[66]
Holekamp NM, Harocopos GJ, Shui Y, et al. Myopia and axial length contribute to vitreous liquefaction and nuclear cataract[EB/OL].[2019-03-24].

URL    
[67]
Zhu X, Zhou P, Zhang K, et al. Epigenetic regulation of αA-crystallin in high myopia-induced dark nuclear cataract[J]. PLoS ONE, 2013, 8(12): e81900.
[1] 陈川, 罗红. 胎儿先天性白内障的超声影像学特征及预后分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 548-552.
[2] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[3] 陈灏楠, 肖伟. 透明角膜切口对白内障术后角膜散光的影响及其精准测量的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 172-176.
[4] 方蕊, 宋旭东. 非编码核糖核酸与白内障相关的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 94-98.
[5] 郝壮, 马济远, 何梦梅, 李兴育, 陆新婷, 武静, 周健. 迟发性囊袋阻滞综合征临床特征、治疗方法及其疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 70-75.
[6] 刘兆川, 宋旭东. 重视虹膜松弛综合征围手术期的防治[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 1-5.
[7] 万修华. 角膜移植术后白内障吸除联合张力环及后房型人工晶状体植入术[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 0-.
[8] 万修华. 白内障标准化手术系列视频(5级全白核)[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 0-.
[9] 王震宇, 张维嘉, 胡曼, 高传文, 石砚, 王怀洲. 微导管辅助360°小梁切开术治疗先天性白内障术后继发青光眼的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 275-280.
[10] 王晓宇, 李亚新, 刘一昀, 耿嘉懿, 秦锐, 李炎城, 敖明昕, 刘德海, 齐虹. 不同设计多焦点人工晶状体植入后视觉质量差异的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 210-215.
[11] 姜雅琴, 刘丽峰, 刘秀花, 张亚丽. 白内障术后早期患者配戴绷带镜对泪膜质量及其动态变化影响的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 204-209.
[12] 蒋晨, 万新娟, 谢小东, 丁琳. 糖化血红蛋白、硫氧还蛋白、硫氧还蛋白互作蛋白与皮质性白内障的关系[J]. 中华临床医师杂志(电子版), 2022, 16(09): 914-918.
[13] 付鹏, 沈念, 黄艳玲, 杨水平, 万小波. 外伤性晶状体脱位合并周边隐匿性视网膜病变的临床特征及预后分析[J]. 中华临床医师杂志(电子版), 2022, 16(06): 536-540.
[14] 彭丽, 于娜, 吴雪莲. 老年白内障患者超声乳化术后眼部疼痛原因分析[J]. 中华老年病研究电子杂志, 2023, 10(02): 49-51.
[15] 刘天龙. 改良型超声乳化手术治疗高度近视合并白内障疗效观察[J]. 中华老年病研究电子杂志, 2023, 10(01): 30-33.
阅读次数
全文


摘要