切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (04) : 193 -198. doi: 10.3877/cma.j.issn.2095-2007.2019.04.001

述评

重视视觉机制研究常用哺乳类实验动物的选择
王佳佳1, 郭翼宁1, 李学民2,()   
  1. 1. 100083 北京大学第三临床医学院2015级本科生
    2. 北京大学第三临床医学院眼科
  • 收稿日期:2019-02-28 出版日期:2019-08-28
  • 通信作者: 李学民
  • 基金资助:
    首都卫生发展科研专项项目(首发2018-2-4093)

Pay attention to the selection of mammals commonly used in animal experiments for the study on visual mechanism

Jiajia Wang1, Yining Guo1, Xuemin Li2,()   

  1. 1. Bachelor′s Degree 2015, Third Clinical Medical College of Peking University, Beijing 100083, China
  • Received:2019-02-28 Published:2019-08-28
  • Corresponding author: Xuemin Li
引用本文:

王佳佳, 郭翼宁, 李学民. 重视视觉机制研究常用哺乳类实验动物的选择[J]. 中华眼科医学杂志(电子版), 2019, 09(04): 193-198.

Jiajia Wang, Yining Guo, Xuemin Li. Pay attention to the selection of mammals commonly used in animal experiments for the study on visual mechanism[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(04): 193-198.

认识视网膜神经节细胞(RGC)是研究视觉机制的重要前提。RGC在不同物种中有其各自的分类与命名方法,但不同的分类方式之间又存在内在的联系,这说明视觉信号传递在物种进化过程中具有同源性;不同物种神经节细胞在视网膜上的分布规律有相似之处。因此,有必要提炼出不同物种视网膜神经节细胞分类中的异同,为视觉机制研究提供参考。本文中笔者就视网膜研究中较重要几类物种的神经节细胞分类及其特点进行描述,并总结出不同分类方式之间的内在同源性与差异性,旨在促进对视觉形成过程的理解。

The understanding of retinal ganglion cells (RGC) is an important premise for us to explore the visual mechanism. In light of various kinds of RGC, the classification and naming methods of them are more complicated and non-uniform in different mammalian species. On the one hand, there are intrinsic connections and commonalities between different classification methods, suggesting the homology of visual signal transmission in the evolution of species; on the other hand, the distribution of ganglion cells on the retina in different species has a similar pattern. Therefore, it is necessary to pick up the difference and simlarity among various mammals in the classification of RGC. This review describes the classification and characteristics of ganglion cells in several types of species that are important in retinal research, and summarizes the intrinsic homology between different classification methods, which helps us to deepen the understanding of the visual formation process.

表1 灵长目动物RGC的分类特点
表2 猫科动物RGC分类特点
表3 兔科动物RGC分类特点
分型* 形态特点 电生理特点与功能特性 同源性
G1型 兔视网膜中最小的神经节细胞,扁平胞体,致密、狭小的树突野,树突野直径大约为150~200 μm 局部边缘检测器  
G2型 与G1树突分支类似,但更大而稀疏,树突野直径大约200 μm,且多位于单一平面内,分布不对称 与猫ζ细胞形态相似
G3型 小型双分层神经节细胞,其3~4个初级树突在视网膜内丛状层S4和S5分层,树突野直径大约为200~300 μm 负责有色视觉,对短波敏感,传递S-视锥细胞的蓝色信号 与灵长类动物中发现的小型双分层神经节细胞相同
G4型 树突野略大于G2和G3,其2~4个初级树突上布满细而短的分支,次级树突尖端肿胀为膨体 有ON和OFF两类 形态学上与猫β型细胞同源
G5型 树突野更大一些,直径大约为300 μm,外观辐射状,树突野中树突分布均匀 几乎均为OFF细胞 形态学与猫η型细胞同源
G6型 中型双分层树突野神经元,树突分布不均匀,相互交叉,树突野直径为300~500 μm,在内丛状层S1(OFF亚层)、S4和S5层(ON亚层)中多次分层 瞬态均匀检测器,其维持响应被所有类型的视觉刺激瞬时抑制,其ON树突的面积通常是OFF的两倍[23] 分支模式类似猫ε型细胞
G7型 双分层的中型树突野神经元,在内丛状层的ON和OFF亚层中分层,树突环状分支,呈蜂窝样外观;与ON-OFF型DSGC类似的一种新型的双稳态瞬态ON-OFF型RGC近年来也被描述,其与ON-OFF型DSGC共分层,对闪烁的亮暗瞬时刺激作出响应,但与ON-OFF型DSGC不同的是,双稳态瞬态ON-OFF细胞对移动的刺激没有任何方向偏好[24] 为兔视网膜中被广泛描述的ON-OFF型DSGC\[25,26,27,28]
G8型 树突分支更大而稀疏,树突野直径为400 μm,多在S4层分层 形态学与猫γ型细胞同源
G9型 在内丛状层S1和S2的OFF亚层分层 形态与猫视网膜δ-OFF神经节细胞相似
G10型 与G11型类似,但初级树突比G11型更细,次级树突更长,在内丛状层不同水平分支;可进一步分为两种亚型,一种与无长突细胞耦联,一种不与无长突细胞耦联,表明其GABA依赖性定向信号可以独立于星爆型无长突细胞的机制产生[29] 为先前研究的ON型DSGC[25,30,31] 形态与猫δ-ON同源
G11型 兔视网膜中最大的神经节细胞 有ON和OFF两类,为瞬态反应细胞 与猫RGC中的α-Y细胞同源
[1]
Masland RH. The neuronal organization of the retina[J]. Neuron, 2012, 76(2): 266-280.
[2]
Yamada ES, Silveira LC, Gomes FL, et al. The retinal ganglion cell classes of New World primates[J]. Rev Bras Biol, 1996, 56(2): 381-396.
[3]
Silveira LC, Yamada ES, Perry VH, et al. M and P retinal ganglion cells of diurnal and nocturnal New-World monkeys[J]. Neuroreport, 1994, 5(16): 2077-2081.
[4]
Lisa J. Croner EK. Receptive fields of pand M Ganglion Cells[J]. Vision Res, 1995, 35(1): 7-24.
[5]
Dacey DM. Physiology, morphology and spatial densities of identified ganglion cell types in primate retina[M]. New York: John Wiley & Sons, Ltd, 2007.
[6]
Coimbra JP, Kaswera-Kyamakya C, Gilissen E, et al. The topographic organization of retinal ganglion cell density and spatial resolving power in an unusual arboreal and slow-moving strepsirhine primate, the Potto (Perodicticus potto)[J]. Brain Behav Evol, 2016, 87(1): 4-18.
[7]
Elizabeth S, Yamada LCLS, Hugh Perry V. Morphology, dendritic field size, somal size, density, and coverage of M and P retinal ganglion cells of dichromatic Cebus monkeys[J]. Visual Neuroscience, 1996, 13(6): 1011-1029.
[8]
Elizabeth S, Yamada LCLS, Hugh Perry V, et al. M and P retinal ganglion cells of the owl monkey-morphology, size and photoreceptor convergence[J]. Vis Res, 2001, 41(2): 119-131.
[9]
Ethan A. Benardete EK, Knight BW. Contrast gain control in the primate retina: P cells are not X-like, some M cells are[J]. Vis Neurosci, 1992, 8: 483-486.
[10]
Crook JD, Peterson BB, Packer OS, et al. The smooth monostratified ganglion cell: evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey[J]. J Neurosci, 2008, 28(48): 12654-12671.
[11]
Rodieck RW, Watanabe M. Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus[J]. J Comp Neurol, 1993, 338(2): 289-303.
[12]
Kolb H, Linberg KA, Fisher SK. Neurons of the human retina: a Golgi study[J]. J Comp Neurol, 1992, 318(2): 147-187.
[13]
Peterson BB, Dacey DM. Morphology of wide-field bistratified and diffuse human retinal ganglion cells[J]. Vis Neurosci, 2000, 17(4): 567-578.
[14]
Sweeney NT, James KN, Nistorica A, et al. Expression of transcription factors divides retinal ganglion cells into distinct classes[J]. J Comp Neurol, 2019, 527(1): 225-235.
[15]
Langer KB, Ohlemacher SK, Phillips MJ, et al. Retinal Ganglion Cell diversity and subtype specification from human pluripotent stem cells[J]. Stem Cell Rep, 2018, 10(4): 1282-1293.
[16]
Rebecca L, Rockhill FJD, MacNeil MA, et al. The diversity of ganglion cells in a mammalian retina[J]. J Neurosci, 2002, 22(9): 3831-3843.
[17]
Rosenberg A, Talebi V. The primate retina contains distinct types of Y-like ganglion cells[J]. J Neurosci, 2009, 29(16): 5048-5050.
[18]
Berson DM, Isayama T, Pu M. The Eta ganglion cell type of cat retina[J]. J Comp Neurol, 1999, 408(2): 204-219.
[19]
Isayama T, Berson DM, Pu M. The Eta ganglion cell type of cat retina[J]. J Comp Neurol, 2000, 417(1): 32-48.
[20]
Taylor WR, Vaney DI. New directions in retinal research[J]. Trends Neurosci, 2003, 26(7): 379-385.
[21]
Venkataramani S, Taylor WR. Synaptic mechanisms generating orientation selectivity in the ON pathway of the rabbit retina[J]. J Neurosci, 2016, 36(11): 3336-3349.
[22]
汪晓磊,马建民,王宁利,等. 视网膜神经节细胞形态学分型进展[J]. 中华眼科杂志2013, 49(7): 665-668.
[23]
Sivyer B, Vaney DI. Dendritic morphology and tracer-coupling pattern of physiologically identified transient uniformity detector ganglion cells in rabbit retina[J]. Vis Neurosci, 2010, 27(5/6): 159-170.
[24]
Sivyer B, Venkataramani S, Taylor WR, et al. A novel type of complex ganglion cell in rabbit retina[J]. J Comp Neurol, 2011, 519(16): 3128-3138.
[25]
Amthor FR, Takahashi ES, Oyster CW. Morphologies of rabbit retinal ganglion cells with complex receptive fields[J]. J Comp Neurol, 1989, 280(1): 97-121.
[26]
Famiglietti EV. Dendritic co-stratification of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina[J]. J Comp Neurol, 1992, 324(3): 322-335.
[27]
Vaney DI. Territorial organization of direction-selective ganglion cells in rabbit retina[J]. J Neurosci, 1994, 14(11): 6301-6316.
[28]
Yang G, Masland RH. Receptive fields and dendritic structure of directionally selective retinal ganglion cells[J]. J Neurosci, 1994, 14(9): 5267-5280.
[29]
Hoshi H, Tian LM, Massey SC, et al. Two distinct types of ON directionally selective ganglion cells in the rabbit retina[J]. J Comp Neurol, 2011, 519(13): 2509-2521.
[30]
Oyster CW, Simpson JI, Takahashi ES, et al. Retinal ganglion cells projecting to the rabbit accessory optic system[J]. J Comp Neurol, 1980, 190(1): 49-61.
[31]
He S, Masland RH. ON direction-selective ganglion cells in the rabbit retina: dendritic morphology and pattern of fasciculation[J]. Vis Neurosci, 1998, 15(2): 369-375.
[32]
Gan WB, Grutzendler J, Wong WT, et al. Multicolor "DiOlistic" labeling of the nervous system using lipophilic dye combinations[J]. Neuron, 2000, 27(2): 219-225.
[33]
Sun W, Li N, He S. Large-scale morphological survey of mouse retinal ganglion cells[J]. J Comp Neurol, 2002, 451(2): 115-126.
[34]
王宗华,阴正勤,王仕军,等. 大鼠视网膜神经节细胞的电生理学与形态学特性[J]. 中华眼底病杂志2004, 20(3): 160-164.
[35]
Wong RC, Cloherty SL, Ibbotson MR, et al. Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis[J]. J Neurophysiol, 2012, 108(7): 2008-2023.
[36]
Baden T, Berens P, Franke K, et al. The functional diversity of retinal ganglion cells in the mouse[J]. Nature, 2016, 529(7586): 345-350.
[37]
Weng S, Sun W, He S. Identification of ON-OFF direction-selective ganglion cells in the mouse retina[J]. J Physiol, 2005, 562(3): 915-923.
[38]
Martersteck EM, Hirokawa KE. Diverse Central Projection Patterns of Retinal Ganglion Cells[J]. Cell Rep, 2017, 18(8): 2058-2072.
[39]
Jacoby J, Schwartz GW. Three small-receptive-field ganglion cells in the mouse retina are distinctly tuned to size, speed, and object motion[J]. J Neurosci, 2017, 37(3): 610-625.
[40]
徐西彬,陈耀星,王子旭,等. 山羊视网膜节细胞的形态学类型及其分布特点[J]. 神经解剖学杂志2007, 23(4): 395-399.
[41]
Coimbra JP, Manger PR. Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Ceratotherium simum)[J]. J Comp Neurol, 2017, 525(11): 2484-2498.
[42]
Coimbra JP, Bertelsen MF, Manger PR. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius)[J]. J Comp Neurol, 2017, 525(11): 2499-2513.
[43]
Qiu X, Kumbalasiri T, Carlson SM, et al. Induction of photosensitivity by heterologous expression of melanopsin[J]. Nature, 2005, 433(7027): 745-749.
[44]
Guler AD, Ecker JL, Lall GS, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision[J]. Nature, 2008, 453(7191): 102-105.
[45]
Satchidananda P, Nayak SK, Campo B, et al. Illumination of the melanopsin signaling pathway[J]. Science, 2005, 307: 600-604.
[46]
Schmidt TM, Chen SK, Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions[J]. Trends Neurosci, 2011, 34(11): 572-580.
[1] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[2] 吕淑懿, 张燕, 章美武, 范晓翔, 高立博, 李飞. 人工智能自动检测系统对不同经验医师诊断乳腺小肿块的辅助作用[J]. 中华医学超声杂志(电子版), 2022, 19(09): 983-989.
[3] 李振霞, 郑小雯, 纪芳, 夏伦果, 陈荣敬, 游清玲, 房兵. 基于Bloom目标分类理论的翻转课堂模式在口腔本科正畸教学中的应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(02): 133-139.
[4] 付曾强, 罗洪, 彭晶晶. 老年乳腺浸润性导管癌超声特征及其与分子分型相关性研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 258-261.
[5] 庞兴华, 苑著. 针吸细胞块技术在术前乳腺癌分子分型中的应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 276-279.
[6] 张燕珍, 王锡携, 文小兰. 血清巨噬细胞迁移抑制因子对活动性肺结核分诊检测的意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 200-202.
[7] 莫钊鸿, 翟航, 苏日顺, 孟泓宇, 罗豪, 陈文豪, 许瑞云. U2AF2表达对肝细胞癌增殖和迁移的影响及其与预后的关系[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 336-341.
[8] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[9] 吴瑟菲, 苗金红, 谭舒眉, 李学民, 韩亮, 次仁琼达, 央珍, 胡晋平. 纯全氟丙烷填充联合玻璃体切割术治疗视网膜脱离的临床疗效观察[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 205-209.
[10] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[11] 崔宏宇, 杨一佺, 郭黎霞, 吕爱国, 张志宏, 张新, 杨艳萍, 申然, 连丽英, 曹志刚, 王立芳, 胡建华, 范肃洁. 改良Ahmed青光眼引流阀植入术治疗闭角期新生血管性青光眼疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 76-81.
[12] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[13] 张宇鹏, 邓爱军, 孙艳. 促红细胞生成素治疗间接性外伤性视神经病变的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 45-49.
[14] 郑小迪, 甘海润, 蔡建勋, 李露婷, 庞鹏飞, 李冰. PLK3基因Y318H罕见突变促进视网膜母细胞瘤的生长[J]. 中华介入放射学电子杂志, 2023, 11(02): 146-154.
[15] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
阅读次数
全文


摘要