[1] |
Sun Q, Jing Y, Zhang B, et al. The risk factors for diabetic retinopathy in a Chinese population: A cross-sectional study[J]. Diabetes Res, 2021, PMID: 5340453.
|
[2] |
Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: A position statement by the American diabetes association[J]. Diabetes Care, 2017,40(3): 412-418.
|
[3] |
Noonan JE, Lamoureux EL, Sarossy M. Neuronal activity-dependent regulation of retinal blood flow[J]. Clin Exp Ophthalmol, 2015, 43(7) : 673-682.
|
[4] |
Reed MJ, Damodarasamy M, Banks WA. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer′s disease[J]. Tissue Barriers, 2019, 7(4) : 1651157.
|
[5] |
Metea MR, Newman EA. Signalling within the neurovascular unit in the mammalian retina[J]. Exp Physiol, 2007, 92(4): 635-640.
|
[6] |
欧阳灵艺,贺涛,邢怡桥.青光眼中视网膜神经血管单元损伤的研究进展[J].国际眼科杂志,2024,24(2):230-235.
|
[7] |
Yang S, Zhang J, Chen L. The cells involved in the pathological process of diabetic retinopathy[J]. Biomed Pharmacother, 2020, 132: 110818.
|
[8] |
Sinclair SH, Schwartz SS. Diabetic retinopathy-an underdiagnosed and undertreated inflammatory, neuro-vascular complication of diabetes[J]. Front Endocrinol (Lausanne), 2019, 10: 843.
|
[9] |
Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retina[J]. Invest Ophthalmol Vis Sci, 2003, 44(12): 5327-5334.
|
[10] |
Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration[J]. Int J Mol Sci, 2018, 19(1): 110.
|
[11] |
Pannicke T, Iandiev I, Wurm A, et al. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina[J].Diabetes, 2006, 55(3): 633-639.
|
[12] |
Mizutani M, Gerhardinger C, Lorenzi M. Müller cell changes in human diabetic retinopathy[J]. Diabetes,1998,47(3): 445-449.
|
[13] |
Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy[J]. Front Immunol, 2020, 11: 564077.
|
[14] |
Feenstra DJ, Yego EC, Mohr S. Modes of retinal cell death in diabetic retinopathy[J]. Clin Exp Ophthalmol, 2013, 4(5): 298.
|
[15] |
梁汇珉,李赵伟,李铮,等.脑源性神经营养因子对糖尿病大鼠视网膜Müller细胞的保护作用[J].眼科新进展,2017,37(12):1110-1113,1118.
|
[16] |
Antonetti DA, Silva PS, Stitt AW. Current understanding of the molecular and cellular pathology of diabetic retinopathy[J]. Nat Rev Endocrinol, 2021, 17(4): 195-206.
|
[17] |
Aung MH, Park HN, Han MK, et al. Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes[J]. Neurosci, 2014, 34(3): 726-736.
|
[18] |
王苏豫,姚雨佳,李佳骏,等.脑源性神经营养因子对视网膜神经血管单元的保护作用[J].国际眼科杂志,2024,24(2):216-220.
|
[19] |
Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2011, 52(2): 1156-1163.
|
[20] |
Li B, Ning B, Yang F, et al. Nerve growth factor promotes retinal neurovascular unit repair: A Review[J]. Curr Eye Res, 2022, 47(8): 1095-1105.
|
[21] |
Pfister F, Feng Y, vom-Hagen F, et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy[J]. Diabetes, 2008, 57(9): 2495-2502.
|
[22] |
Oshitari T. Neurovascular Impairment and Therapeutic Strategies in Diabetic Retinopathy[J]. Int J Environ Res Public Health, 2021, 19(1): 439.
|
[23] |
Skaper SD. Neurotrophic factors: An Overview[J]. Methods Mol Biol, 2018, 1727: 1-17.
|
[24] |
Arroba AI, Alcalde-Estevez E, García-Ramírez M,et al. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice[J]. Biochim Biophys Acta, 2016, 1862(9): 1663-1674.
|
[25] |
李洁.NGF及其受体在盆腔器官脱垂患者阴道前壁组织中的表达及意义[D]. 郑州:郑州大学,2020.
|
[26] |
Harada C, Harada T, Quah HM, et al. Role of neurotrophin-4/5 in neural cell death during retinal development and ischemic retinal injury in vivo[J]. Invest Ophthalmol Vis Sci, 2005, 46(2): 669-673.
|
[27] |
Porcino C, Mhalhel K, Briglia M, et al. Neurotrophins and trk neurotrophin receptors in the retina of adult killifish (Nothobranchius guentheri)[J]. Int J Mol Sci, 2024, 25(5): 2732.
|
[28] |
Reichardt LF. Neurotrophin-regulated signalling pathways[J]. Philos Trans R Soc Lond B Biol Sci, 2006, 361(1473): 1545-1564.
|
[29] |
Autry AE, Monteggia LM. Brain-derived neurotrophic factor and neuropsychiatric disorders[J]. Pharmacol Rev, 2012, 64(2): 238-258.
|
[30] |
Levy MJF, Boulle F, Steinbusch HW, et al. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression[J]. Psychopharmacology (Berl), 2018, 235(8): 2195-2220.
|
[31] |
Von-Bartheld CS. Neurotrophins in the developing and regenerating visual system[J]. Histol Histopathol, 1998, 13(2): 437-459.
|
[32] |
Garcia TB, Hollborn M, Bringmann A. Expression and signaling of NGF in the healthy and injured retina[J]. Cytokine Growth Factor Rev, 2017, 34: 43-57.
|
[33] |
Tirassa P, Rosso P, Iannitelli A. Ocular nerve growth factor (NGF) and NGF eye drop application as paradigms to investigate NGF neuroprotective and reparative actions[J]. Methods Mol Biol, 2018, 1727: 19-38.
|
[34] |
Rocco ML, Balzamino BO, Petrocchi PP, et al. Effect of purified murine NGF on isolated photoreceptors of a rodent developing retinitis pigmentosa[J]. PLoS Onj, 2015, 10(4): e0124810.
|
[35] |
Ng DS, Chiang PP, Tan G, et al. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy[J]. Clin Exp Ophthalmol, 2016, 44(4): 243-250.
|
[36] |
Shityakov S, Nagai M, Ergün S, et al. The protective effects of neurotrophins and microRNA in diabetic retinopathy, nephropathy and heart failure via regulating endothelial function[J]. Biomolecules, 2022, 12(8): 1113.
|
[37] |
Kim ST, Chung YY, Hwang HI, et al. Differential expression of BDNF and BIM in streptozotocin-induced diabetic rat retina after fluoxetine injection[J]. In Vivo, 2021, 35(3): 1461-1466.
|
[38] |
Garhöfer G, Chua J, Tan B, et al. Retinal neurovascular coupling in diabetes[J]. Clin Med, 2020, 9(9): 2829.
|
[39] |
Arévalo JC, Wu SH. Neurotrophin signaling: many exciting surprises![J]. Cell Mol Life Sci, 2006, 63(13): 1523-1537.
|
[40] |
Olivieri G, Otten U, Meier F, et al. Oxidative stress modulates tyrosine kinase receptor A and p75 receptor (low-affinity nerve growth factor receptor) expression in SHSY5Y neuroblastoma cells[J]. Neurol Clin Neurophysiol, 2002, 2002(2): 2-10.
|
[41] |
Mysona BA, Matragoon S, Stephens M, et al. Imbalance of the nerve growth factor and its precursor as a potential biomarker for diabetic retinopathy[J].Biomed Res Int, 2015, PMID: 571456.
|
[42] |
李铮.神经生长因子对糖尿病大鼠视网膜神经节细胞及突触素表达的影响[D].锦州:锦州医科大学,2018.
|
[43] |
Mohamed R, El-Remessy AB. Imbalance of the nerve growth factor and its precursor: Implication in diabetic retinopathy[J]. Clin Exp Ophthalmol, 2015, 6(5): 483.
|
[44] |
Troullinaki M, Alexaki VI, Mitroulis I, et al. Nerve growth factor regulates endothelial cell survival and pathological retinal angiogenesis[J]. Cell Mol Med, 2019, 23(4): 2362-2371.
|
[45] |
Mohamed R, Shanab AY, El Remessy AB. Deletion of the neurotrophin receptor p75NTR prevents diabetes-induced retinal acellular capillaries in streptozotocin-induced mouse diabetic model[J]. Diabetes Metab Disord Control, 2017, 4(6): 129.
|
[46] |
Matragoon S, Al-Gayyar MM, Mysona BA, et al. Electroporation-mediated gene delivery of cleavage-resistant pronerve growth factor causes retinal neuro- and vascular degeneration[J]. Mol Vis, 2012, 18: 2993-3003.
|
[47] |
Ji Z, Luo J, Su T, et al. miR-7a targets insulin receptor substrate-2 gene and suppresses viability and invasion of cells in diabetic retinopathy mice via PI3K-Akt-VEGF Pathway[J]. Diabetes Metab Syndr Obes, 2021, 14: 719-728.
|
[48] |
Hammes HP, Federoff HJ, Brownlee M. Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes[J]. Mol Med, 1995, 1(5): 527-534.
|
[49] |
Saleh I, Maritska Z, Parisa N,et al. Inhibition of receptor for advanced glycation end products as new promising strategy treatment in diabetic retinopathy[J]. Open Access Maced J Med Sci, 2019, 7(23): 3921-3924.
|
[50] |
Afarid M, Namvar E, Sanie-Jahromi F. Diabetic retinopathy and BDNF: A review on its molecular basis and clinical applications[J]. Ophthalmol, 2020, PMID: 32509339.
|
[51] |
Bikbova G, Oshitari T, Baba T, et al. Neurotrophic factors for retinal ganglion cell neuropathy——with a special reference to diabetic neuropathy in the retina[J]. Curr Diabetes Rev, 2014, 10(3): 166-176.
|
[52] |
Sadikan MZ, Abdul-Nasir NA. Diabetic retinopathy: emerging concepts of current and potential therapy[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(12): 3395-3406.
|
[53] |
Ola MS, Nawaz MI, Khan HA, et al. Neurodegeneration and neuroprotection in diabetic retinopathy[J]. Int J Mol Sci, 2013, 14(2): 2559-2572.
|
[54] |
Krabbe KS, Nielsen AR, Krogh-Madsen R, et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes[J]. Diabetologia, 2007, 50(2): 431-438.
|
[55] |
Ola MS, Nawaz MI, El-Asrar AA, et al. Reduced levels of brain derived neurotrophic factor (BDNF) in the serum of diabetic retinopathy patients and in the retina of diabetic rats[J]. Cell Mol Neurobiol, 2013, 33(3): 359-367.
|
[56] |
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications[J]. Arch Med Sci, 2015, 11(6): 1164-1178.
|
[57] |
Zhang Z, Zhang Y, Zhou Z, et al. BDNF regulates the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway during fracture healing[J]. Mol Med Rep, 2017, 15(3): 1362-1367.
|
[58] |
Liu Y, Tao L, Fu X, et al. BDNF protects retinal neurons from hyperglycemia through the TrkB/ERK/MAPK pathway[J]. Mol Med Rep, 2013, 7(6): 1773-1778.
|
[59] |
Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon[J].Cell Biochem, 2010, 110(6): 1306-1313.
|
[60] |
Li L, Chen R, Zhang H, et al. The epigenetic modification of DNA methylation in neurological diseases[J]. Front Immunol, 2024, 15: 1401962.
|
[61] |
Parisi V, Oddone F, Roberti G, et al. Neurotrophic factors, and optic neuropathy[J]. Int J Mol Sci, 2020, 21: 6394-6398.
|
[62] |
Bai Y, Xu Y, Wu X, et al. Role of brain-derived neurotrophic factor in diabetic retinopathy: A comprehensive review[J]. Biomed Pharmacother, 2021, 137: 111235
|
[63] |
Oshitari T, Oshitari N, Yoshida H, et al. Effect of neurotrophic factors on neuronal apoptosis and neurite regeneration in cultured rat retinas exposed to high glucose[J]. Brain Res, 2010, 1346: 43-51.
|
[64] |
Abu-El-Asrar AM, Mohammad G, De-Hertogh G, et al. Neurotrophins and neurotrophin receptors in proliferative diabetic retinopathy[J]. PLoS One, 2013, 8(6): e65472.
|
[65] |
Sun Z, Hu W, Yin S, et al. NGF protects against oxygen and glucose deprivation-induced oxidative stress and apoptosis by up-regulation of HO-1 through MEK/ERK pathway[J]. Neurosci Lett,,2017, 641: 8-14.
|
[66] |
Xu B, Dong Q, Yu C, et al. Advances in research on the activity evaluation, mechanism and structure-activity relationships of natural antioxidant peptides[J]. Antioxidants (Basel), 2024, 13(4): 479.
|
[67] |
Boss JD, Singh PK, Pandya HK, et al. Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(12): 5594-5603.
|
[68] |
Atkinson J, Panni MK, Lund RD. Effects of neurotrophins on embryonic retinal outgrowth[J]. Brain Res Dev Brain Res, 1999, 112(2): 173-180.
|
[69] |
Mysona BA, Al-Gayyar MM, Matragoon S, et al. Modulation of p75(NTR) prevents diabetes- and proNGF-induced retinal inflammation and blood-retina barrier breakdown in mice and rats[J]. Diabetologia, 2013, 56(10): 2329-2339.
|
[70] |
Fico E, Rosso P, Triaca V, et al. NGF prevents loss of TrkA/VEGFR2 Cells, and VEGF isoform dysregulation in the retina of adult diabetic rats[J]. Cells, 2022, 11(20): 3246.
|
[71] |
Seki M, Tanaka T, Nawa H, et al. Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats: therapeutic potential of brain-derived neurotrophic factor for dopaminergic amacrine cells[J]. Diabetes, 2004, 53(9): 2412-2419.
|
[72] |
Lehre KP, Davanger S, Danbolt NC. Localization of the glutamate transporter protein GLAST in rat retina[J]. Brain Res, 1997, 744(1): 129-137.
|
[73] |
Khalin I, Alyautdin R, Kocherga G, et al. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness[J]. Int J Nanomedicine, 2015, 10: 3245-3267.
|
[74] |
Suzuki T, Ooto S, Akagi T, et al. Effects of prolonged delivery of brain-derived neurotrophic factor on the fate of neural stem cells transplanted into the developing rat retina[J]. Biochem Biophys Res Commun, 2003, 309(4): 843-847.
|
[75] |
Fu QL, Li X, Yip HK,et al. Combined effect of brain-derived neurotrophic factor and LINGO-1 fusion protein on long-term survival of retinal ganglion cells in chronic glaucoma[J]. Neuroscience, 2009, 162(2): 375-382.
|
[76] |
Bennett J, Wilson J, Sun D, et al. Adenovirus vector-mediated in vivo gene transfer into adult murine retina[J]. Invest Ophthalmol Vis Sci, 1994, 35(5): 2535-2542.
|
[77] |
Ren R, Li Y, Liu Z, et al. Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure[J]. Invest Ophthalmol Vis Sci, 2012, 53(2): 1003-1011.
|
[78] |
Zhou XM, Yuan HP, Wu DL, et al. Study of brain-derived neurotrophic factor gene transgenic neural stem cells in the rat retina[J]. Chin Med J (Engl), 2009, 122(14): 1642-1649.
|
[79] |
Giannaccini M, Usai A, Chiellini F, et al. Neurotrophin-conjugated nanoparticles prevent retina damage induced by oxidative stress[J]. Cell Mol Life Sci, 2018, 75(7): 1255-1267.
|
[80] |
Edelhauser HF, Rowe-Rendleman CL, Robinson MR, et al. Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications[J]. Invest Ophthalmol Vis Sci, 2010, 51(11): 5403-5420.
|
[81] |
Sieving PA, Caruso RC, Tao W, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants[J]. Proc Natl Acad Sci USA, 2006, 103(10): 3896-3901.
|
[82] |
Ola MS, Ahmed MM, Shams S, et al. Neuroprotective effects of quercetin in diabetic rat retina[J]. Saudi J Biol Sci, 2017, 24(6): 1186-1194.
|
[83] |
Elsherbiny NM, Abdel-Mottaleb Y, Elkazaz AY, et al. Carbamazepine alleviates retinal and optic nerve neural degeneration in diabetic mice via nerve growth factor-induced PI3K/Akt/mTOR activation[J]. Front Neurosci, 2019, 13: 1089.
|
[84] |
Barcelona PF, Sitaras N, Galan A, et al. p75NTR and its ligand proNGF activate paracrine mechanisms etiological to the vascular, inflammatory, and neurodegenerative pathologies of diabetic retinopathy[J]. Neurosci, 2016, 36(34): 8826-8841.
|
[85] |
Lu L, Wang J, Wang M, et al. Regulatory effects of miR365 and bdnf in müller cells involved in diabetic retina[J]. Invest Ophthalmol Vis Sci, 2013,54(15): 1150.
|
[86] |
Yang L, Yao Y, Zheng W, et al. Nitric oxide mediates negative feedback on the TXNIP/NLRP3 inflammasome pathway to prevent retinal neurovascular unit dysfunction in early diabetic retinopathy[J]. Free Radic Biol Med, 2025, 233: 279-291.
|