[1] |
Li JQ,Welchowski T,Schmid M,et al. Prevalence and incidence of age-related macular degeneration in Europe:a systematic review and meta-analysis[J].Br J Ophthalmol,2020,104(8):1077-1084.
|
[2] |
Fleckenstein M,Keenan TDL,Guymer RH,et al.Age-related macular degeneration[J].Nat Rev Dis Primers,2021,7(1):31.
|
[3] |
Spaide RF,Jaffe GJ,Sarraf D,et al.Consensusnomenclature for reporting neovascular age-related macular degeneration data:consensus on neovascular age-related macular degeneration nomenclature study group[J].Ophthalmology,2020,127(5):616-636.
|
[4] |
Jun S,Datta S,Wang L,et al.The impact of lipids,lipid oxidation,and inflammation on AMD,and the potential role of miRNAs on lipid metabolism in the RPE[J].Exp Eye Res,2019,181:346:355.
|
[5] |
Borchert GA,Shamsnajafabadi H,Hu ML,et al.The role of inflammation in age-related macular degeneration-therapeutic landscapes in geographic atrophy[J]. Cells,2023,12(16):2092.
|
[6] |
Handa JT,Bowes Rickman C,Dick AD,et al.A systems biology approach towards understanding and treating non-neovascular agerelated macular degeneration[J].Nat Commun,2019,10(1):3347.
|
[7] |
Landowski M,Bowes Rickman C.Targeting lipid metabolism for the treatment of age-related macular degeneration:insights from preclinical mouse models[J].JOcul Pharmacol Ther,2022,38(1):3-32.
|
[8] |
Lin JB,Halawa OA,Husain D,et al.Dyslipidemia in agerelated macular degeneration[J].Eye,2022,36(2):312-318.
|
[9] |
Colijn JM,den Hollander AI,Demirkan A,et al.Increased highdensity lipoprotein levels associated with age-related macular degeneration:evidence from the EYE-RISK and European eye epidemiology consortia[J].Ophthalmology,2019,126(3):393-406.
|
[10] |
Keenan TD,Agron E,Mares J,et al.Adherence to the mediterranean diet and progression to late age-related macular degeneration in the age-related eye disease Studies 1 and 2[J].Ophthalmology,2020,127(11):1515-1528.
|
[11] |
Fletcher EL.Contribution of microglia and monocytes to the development and progression of age related macular degeneration[J].Ophthalmic Physiol Opt,2020,40(2):128-139.
|
[12] |
Boyce M,Xin Y,Chowdhury O,et al.Microglia-neutrophil interactions drive dry AMD-like pathology in a mouse model[J].Cells,2022,11(22):3535.
|
[13] |
Yu C,Roubeix C, Sennlaub F, et al. Microglia versus monocytes:distinct roles in degenerative diseases of the retina[J].Trends Neurosci,2020,43(6):433-449.
|
[14] |
O'Koren EG,Yu C,Klingeborn M,et al.Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration[J].Immunity,2019,50(3):723-737.
|
[15] |
Ghosh S,Padmanabhan A,Vaidya T,et al.Neutrophils homing into the retina trigger pathology in early age-related macular degeneration[J].Commun Biol,2019,2:348.
|
[16] |
Malih S,Song YS,Sorenson CM,et al.Choroidal mast cells and pathophysiology of age-related macular degeneration[J].Cells,2023,13(1):50.
|
[17] |
Zhao T,Guo X,Sun Y.Iron accumulation and lipid peroxidation in the aging retina:implication of ferroptosis in age-related macular degeneration[J].Aging Dis,2021,12(2):529-551.
|
[18] |
Li Y,Cao Y,Xiao J,et al.Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury[J].Cell Death Differ,2020,27(9):2635-2650.
|
[19] |
Lane DJR,Metselaar B,Greenough M,et al.Ferroptosis and NRF2:an emerging battlefield in the neurodegeneration of Alzheimer's disease[J].Essays Biochem,2021,65(7):925-940.
|
[20] |
Li LB,Chai R,Zhang S,et al.Iron exposure and the cellular mechanisms linked to neuron degeneration in adult mice[J].Cells,2019,8(2):198.
|
[21] |
Lee JJ,Ishihara K,Notomi S,et al.Lysosome-associated membrane protein-2 deficiency increases the risk of reactive oxygen species-induced ferroptosis in retinal pigment epithelial cells[J].Biochem Biophys Res Commun,2020,521(2):414-419.
|
[22] |
Totsuka K,Ueta T,Uchida T,et al.Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells[J].Exp Eye Res,2019,181:316-324.
|
[23] |
Pan Y,Fu Y,Baird PN,et al.Exploring the contribution of ARMS2 and HTRA1 genetic risk factors in age-related macular degeneration[J].Prog Retin Eye Res,2023,97:101159.
|
[24] |
Fleckenstein M,Schmitz-Valckenberg S,Chakravarthy U.Agerelated macular degeneration:a review[J].JAMA,2024,331(2):147-157.
|
[25] |
Lu ZG,May A,Dinh B,et al.The interplay of oxidative stress and ARMS2-HTRA1 genetic risk in neovascular AMD [J].Vessel Plus,2021:5:4.
|
[26] |
Feng J, Zhang Y, She X, et al. Hypermethylated gene ANKDD1A is a candidate tumor suppressor that interacts with FIH1 and decreases HIF1alpha stability to inhibit cell autophagy in the glioblastoma multiforme hypoxia microenvironment[J].Oncogene,2019,38(1):103-119.
|
[27] |
Lu Z,Lin V,May A,et al.HTRA1 synergizes with oxidized phospholipids in promoting inflammation and macrophage infiltration essential for ocular VEGF expression[J].PLoS One,2019,14(5):e0216808.
|
[28] |
Williams BL,Seager NA,Gardiner JD,et al.Chromosome 10q26-driven age-related macular degeneration is associated with reduced levels of HTRA1 in human retinal pigment epithelium[J].Proc Natl Acad Sci USA,2021,118(30):e2103617118.
|
[29] |
Ho L,van Leeuwen R,Witteman JC,et al.Reducing the genetic risk of age-related macular degeneration with dietary antioxidants,zinc,and omega-3 fatty acids:the Rotterdam study[J].Arch Ophthalmol,2011,129(6):758-766.
|
[30] |
Schaumberg DA,Hankinson SE,Guo Q,et al.A prospective study of 2 major age-related macular degeneration susceptibility alleles and interactions with modifiable risk factors[J].Arch Ophthalmol,2007,125(1):55-62.
|
[31] |
Colijn JM,Meester-Smoor M,Verzijden T,et al.Genetic risk,lifestyle,and age-related macular degeneration in Europe:The EYE-RISK Consortium[J].Ophthalmology,2021,128(7):1039-1049.
|
[32] |
Penfold PL, Killingsworth MC, Sarks SH. Senile macular degeneration:the involvement of immunocompetent cells[J].Graefes Arch Clin Exp Ophthalmol,1985,223(2):69-76.
|
[33] |
Rozing MP,Durhuus JA,Krogh-Nielsen M,et al.Age-related macular degeneration:A two-level model hypothesis[J].Prog Retin Eye Res,2020,76:100825.
|
[34] |
Park YG,Park YS,Kim IB.Complement system and potential therapeutics in age-related macular degeneration[J].Int J Mol Sci,2021,22(13):6851.
|
[35] |
Armento A,Ueffing M,Clark SJ.The complement system in agerelated macular degeneration[J].Cell Mol Life Sci,2021,78(10):4487-4505.
|
[36] |
Heesterbeek TJ, Lechanteur YTE, Lores-Motta L, et al.Complement activation levels are related to disease stage in AMD[J].Invest Ophthalmol Vis Sci,2020,61(3):18.
|
[37] |
Merle BMJ, Colijn JM, Cougnard-Gregoire A, et al.Mediterranean diet and incidence of advanced age-related macular degeneration:The EYE-RISK consortium[J].Ophthalmology,2019,126(3):381-390.
|
[38] |
Winkler TW,Grassmann F,Brandl C,et al.Genome-wide association meta-analysis for early age-related macular degeneration highlights novel loci and insights for advanced disease[J].BMC Med Genomics,2020,13(1):120.
|
[39] |
Landowski M,Kelly U,Klingeborn M,et al.Human complement factor H Y402H polymorphism causes an age-related macular degeneration phenotype and lipoprotein dysregulation in mice[J].Proc Natl Acad Sci USA,2019,116(9):3703-3711.
|
[40] |
Acar IE, Lores-Motta L, Colijn JM, et al. Integrating metabolomics,genomics,and disease pathways in age-related macular degeneration: The EYE-RISK consortium [J].Ophthalmology,2020,127(12):1693-1709.
|
[41] |
Zhang Y,Gordon SM,Xi H,et al.HDL subclass proteomic analysis and functional implication of protein dynamic change during HDL maturation[J].Redox Biol,2019,24:101222.
|
[42] |
Ferrington DA,Kapphahn RJ,Leary MM,et al.Increased retinal mtDNA damage in the CFH variant associated with age-related macular degeneration[J].Exp Eye Res,2016,145:269-277.
|
[43] |
Armento A,Honisch S,Panagiotakopoulou V,et al.Loss of complement factor H impairs antioxidant capacity and energy metabolism of human RPE cells[J].Sci Rep,2020,10(1):10320.
|
[44] |
Weismann D,Hartvigsen K,Lauer N,et al.Complement factor H binds malondialdehyde epitopes and protects from oxidative stress[J].Nature,2011,478(7367):76-81.
|
[45] |
Borras C,Canonica J,Jorieux S,et al.CFH exerts anti-oxidant effects on retinal pigment epithelial cells independently from protecting against membrane attack complex[J].Sci Rep,2019,9(1):13873.
|
[46] |
Cerniauskas E,Kurzawa-Akanbi M,Xie L,et al.Complement modulation reverses pathology in Y402H-retinal pigment epithelium cell model of age-related macular degeneration by restoring lysosomal function[J].Stem Cells Transl Med,2020,9(12):1585-1603.
|
[47] |
Liu D,Zhang C,Zhang J,et al.Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelialmesenchymal transformation of retinal pigment epithelium[J].Neurobiol Dis,2023,185:106250.
|
[48] |
Lee H,Han JH,Kang YJ,et al.CD82 attenuates TGF-beta1-mediated epithelial-mesenchymal transition by blocking smaddependent signaling in ARPE-19 cells[J].Front Pharmacol,2022,13:991056.
|
[49] |
Li M,Li H,Yang S,et al.L-carnitine attenuates TGF-beta1-induced EMT in retinal pigment epithelial cells via a PPARgamma-dependent mechanism[J].Int J Mol Med,2021,47(6):110.
|
[50] |
Hussain RM,Neiweem AE,Kansara V,et al.Tie-2/angiopoietin pathway modulation as a therapeutic strategy for retinal disease[J].Expert Opin Investig Drugs,2019,28(10):861-869.
|
[51] |
Nguyen QD,Heier JS,Do DV,et al.The Tie2 signaling pathway in retinal vascular diseases:a novel therapeutic target in the eye[J].Int JRetina Vitreous,2020,6:48.
|
[52] |
Zhang B,Yin X, Li J, et al. Essential contribution of macrophage Tie2 signal mediated autophagy in laser-induced choroidal neovascularization [J]. Exp Eye Res, 2020,193:107972.
|
[53] |
Van Hove I,Hu TT,Beets K,et al.Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration[J].Prog Retin Eye Res,2021,85:100966.
|
[54] |
Wolf AT,Harris A,Oddone F,et al.Disease progression pathways of wet AMD:opportunities for new target discovery[J].Expert Opin Ther Targets,2022,26(1):5-12.
|
[55] |
Hu TT,Vanhove M,Porcu M,et al.The potent small molecule integrin antagonist THR-687 is a promising next-generation therapy for retinal vascular disorders[J].Exp Eye Res,2019,180:43-52.
|
[56] |
Souders CL,2nd,Wei C,Schmidt JT,et al.Mitochondria of teleost radial glia:A novel target of neuroendocrine disruption by environmental chemicals?[J].Comp Biochem Physiol C Toxicol Pharmacol,2021,243:108995.
|
[57] |
Kaarniranta K,Uusitalo H,Blasiak J,et al.Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration[J].Prog Retin Eye Res,2020,79:100858.
|
[58] |
Tong Y,Zhang Z,Wang S.Role of mitochondria in retinal pigment epithelial aging and degeneration[J].Front Aging,2022,3:926627.
|
[59] |
Skeie JM,Nishimura DY,Wang CL,et al.Mitophagy:an emerging target in ocular pathology[J].Invest Ophthalmol Vis Sci,2021,62(3):22.
|
[60] |
Tan LX,Li J,Germer CJ,et al.Analysis of mitochondrial dynamics and function in the retinal pigment epithelium by highspeed high-resolution live imaging[J].Front Cell Dev Biol,2022,10:1044672.
|
[61] |
Yu B,Ma J,Li J,et al.Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics[J].Nat Commun,2020,11(1):2549.
|
[62] |
Bianchi E,Scarinci F,Ripandelli G,et al.Retinal pigment epithelium,age-related macular degeneration and neurotrophic keratouveitis[J].Int J Mol Med,2013,31(1):232-242.
|
[63] |
Yako T,Nakamura M,Nakamura S,et al.Pharmacological inhibition of mitochondrial fission attenuates oxidative stressinduced damage of retinal pigmented epithelial cells[J].J Pharmacol Sci,2021,146(3):149-159.
|
[64] |
Noh SE,Lee SJ,Lee TG,et al.Inhibition of cellular senescence hallmarks by mitochondrial transplantation in senescence-induced ARPE-19 cells[J].Neurobiol Aging,2023,121:157-165.
|
[65] |
Proikas-Cezanne T, Ktistakis NT. Editorial: autophagy and ageing:ideas,methods,molecules[J].Front Cell Dev Biol,2020,8:141.
|
[66] |
Mitter SK,Song C,Qi X,et al.Dysregulated autophagy in the RPE is associated with increased susceptibility to oxidative stress and AMD[J].Autophagy,2014,10(11):1989-2005.
|
[67] |
Datta S,Cano M,Ebrahimi K,et al.The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD[J].Prog Retin Eye Res,2017,60:201-218.
|
[68] |
Poltorak Z,Cohen T,Sivan R,et al.VEGF145,a secreted vascular endothelial growth factor isoform that binds to extracellular matrix[J].J Biol Chem,1997,272(11):7151-7158.
|