[14] |
Lam CSY, Tang WC, Tse DY, et al. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial[J]. Br J Ophthalmol, 2020, 104(3): 363-368.
|
[15] |
Ford KJ, Feller MB. Assembly and disassembly of a retinal cholinergic network[J]. Vis Neurosci, 2012, 29(1): 61-71.
|
[16] |
Raviola E, Wiesel TN. An animal model of myopia[J]. N Engl J Med, 1985, 312(25): 1609-1615.
|
[17] |
Mcbrien NA, Moghaddam HO, Reeder AP. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism[J]. Invest Ophthalmol Vis Sci, 1993, 34(1): 205-215.
|
[18] |
Schaeffel F, Troilo D, Wallman J, et al. Developing eyes that lack accommodation grow to compensate for imposed defocus[J]. Vis Neurosci, 1990, 4(2): 177-183.
|
[19] |
Troilo D, Gottlieb MD, Wallman J. Visual deprivation causes myopia in chicks with optic nerve section[J]. Curr Eye Res, 1987, 6(8): 993-999.
|
[20] |
Nebbioso M, Plateroti AM, Pucci B, et al. Role of the dopaminergic system in the development of myopia in children and adolescents[J]. J Child Neurol, 2014, 29(12): 1739-1746.
|
[21] |
Schwahn HN, Kaymak H, Schaeffel F. Effects of atropine on refractive development, dopamine release, and slow retinal potentials in the chick [J]. Vis Neurosci, 2000, 17(2): 165-176.
|
[22] |
Nickla DL, Totonelly K, Dhillon B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks[J]. Exp Eye Res, 2010, 91(5): 715-720.
|
[23] |
Barathi VA, Chaurasia SS, Poidinger M, et al. Involvement of GABA transporters in atropine-treated myopic retina as revealed by iTRAQ quantitative proteomics[J]. J Proteome Res, 2014, 13(11): 4647-4658.
|
[24] |
Fischer AJ, Miethke P, Morgan IG, et al. Cholinergic amacrine cells are not required for the progression and atropine-mediated suppression of form-deprivation myopia[J]. Brain Res, 1998, 794(1): 48-60.
|
[25] |
Lind GJ, Chew SJ, Marzani D, et al. Muscarinic acetylcholine receptor antagonists inhibit chick scleral chondrocytes[J]. Invest Ophthalmol Vis Sci, 1998, 39(12): 2217-2231.
|
[26] |
Barathi VA, Beuerman RW. Molecular mechanisms of muscarinic receptors in mouse scleral fibroblasts: Prior to and after induction of experimental myopia with atropine treatment[J]. Mol Vis, 2011, 17: 680-692.
|
[27] |
Christian PG, Harkin DG, Rayner C, et al. Comparative effects of posterior eye cup tissues from myopic and hyperopic chick eyes on cultured scleral fibroblasts[J]. Exp Eye Res, 2013, 107: 11-20.
|
[28] |
Nickla DL, Zhu X, Wallman J. Effects of muscarinic agents on chick choroids in intact eyes and eyecups: evidence for a muscarinic mechanism in choroidal thinning[J]. Ophthalmic Physiol Opt, 2013, 33(3): 245-256.
|
[29] |
Chiang ST, Phillips JR. Effect of atropine eye drops on choroidal thinning induced by hyperopic retinal defocus[J]. J Ophthalmol, 2018, PMID: 8528315.
|
[30] |
Polak K, Polska E, Luksch A, et al. Choroidal blood flow and arterial blood pressure[J]. Eye, 2003, 17(1): 84-88.
|
[31] |
Chua WH, Balakrishnan V, Chan YH, et al. Atropine for the treatment of childhood myopia[J]. Ophthalmology, 2006, 113(12): 2285-2291.
|
[32] |
Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2)[J]. Ophthalmology, 2012, 119(2): 347-354.
|
[33] |
Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eye drops[J]. Ophthalmology, 2016, 123(2): 391-399.
|
[34] |
Gong Q, Janowski M, Luo M, et al. Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis[J]. JAMA Ophthalmol, 2017, 135(6): 624-630.
|
[35] |
Sacchi M, Serafino M, Villani E, et al. Efficacy of atropine 0.01% for the treatment of childhood myopia in European patients[J]. Acta Ophthalmol, 2019, 97(8): e1136-e1140.
|
[36] |
Wei S, Li SM, An W, et al. Safety and efficacy of low-dose atropine eyedrops for the treatment of myopia progression in Chinese children: A Randomized Clinical Trial[J]. JAMA Ophthalmol, 2020, 138(11): 1178-1184.
|
[37] |
王卫群,钟梅,吕勇. 质量分数0.01%和0.02%阿托品滴眼液对近视儿童瞳孔直径和调节幅度影响的一年随机、双盲、临床对照试验[J]. 中华实验眼科杂志,2019,37(7):540-545.
|
[38] |
Brodstein RS, Brodstein DE, Olson RJ, et al. The treatment of myopia with atropine and bifocals. A long-term prospective study [J]. Ophthalmology, 1984, 91(11): 1373-1379.
|
[39] |
Shih YF, Hsiao CK, Chen CJ, et al. An intervention trial on efficacy of atropine and multi-focal glasses in controlling myopic progression[J]. Acta Ophthalmol Scand, 2001, 79(3): 233-236.
|
[40] |
Yi S, Huang Y, Yu SZ, et al. Therapeutic effect of atropine 1% in children with low myopia[J]. J aapos, 2015, 19(5): 426-429.
|
[41] |
Wang YR, Bian HL, Wang Q. Atropine 0.5% eyedrops for the treatment of children with low myopia: A randomized controlled trial[J]. Medicine (Baltimore), 2017, 96(27): e7371.
|
[42] |
Chiang MF, Kouzis A, Pointer RW, et al. Treatment of childhood myopia with atropine eyedrops and bifocal spectacles[J]. Binocul Vis Strabismus Q, 2001, 16(3): 209-215.
|
[43] |
Kennedy RH, Dyer JA, Kennedy MA, et al. Reducing the progression of myopia with atropine: a long term cohort study of Olmsted County students[J]. Binocul Vis Strabismus Q, 2000, 15(3S): 281-304.
|
[44] |
Syniuta LA, Isenberg SJ. Atropine and bifocals can slow the progression of myopia in children[J]. Binocul Vis Strabismus Q, 2001, 16(3): 203-208.
|
[45] |
Yen MY, Liu JH, Kao SC, et al. Comparison of the effect of atropine and cyclopentolate on myopia [J]. Ann Ophthalmol, 1989, 21(5): 1800-1802,1807.
|
[1] |
Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J]. Ophthalmology, 2016, 123(5): 1036-1042.
|
[2] |
Buch H, Vinding T, La-Cour M, et al. Prevalence and causes of visual impairment and blindness among 9980 Scandinavian adults: the Copenhagen City Eye Study[J]. Ophthalmology, 2004, 111(1): 53-61.
|
[3] |
Klaver CC, Wolfs RC, Vingerling JR, et al. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study[J]. Arch Ophthalmol, 1998, 116(5): 653-658.
|
[4] |
Iwase A, Araie M, Tomidokoro A, et al. Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi Study[J]. Ophthalmology, 2006, 113(8): 1354-1362.
|
[5] |
Jonas JB, Weber P, Nagaoka N, et al. Glaucoma in high myopia and parapapillary delta zone[J]. PLoS One, 2017, 12(4): e0175120.
|
[6] |
Smith TS, Frick KD, Holden BA, et al. Potential lost productivity resulting from the global burden of uncorrected refractive error[J]. Bull World Health Organ, 2009, 87(6): 431-437.
|
[7] |
Yam JC, Jiang Y, Tang SM, et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control[J]. Ophthalmology, 2019, 126(1): 113-124.
|
[8] |
Morgan I, Rose K. How genetic is school myopia?[J]. Prog Retin Eye Res, 2005, 24(1): 1-38.
|
[9] |
Wu PC, Tsai CL, Wu HL, et al. Outdoor activity during class recess reduces myopia onset and progression in school children[J]. Ophthalmology, 2013, 120(5): 1080-1085.
|
[10] |
Rahi JS, Cumberland PM, Peckham CS. Myopia over the lifecourse: prevalence and early life influences in the 1958 British birth cohort[J]. Ophthalmology, 2011, 118(5): 797-804.
|
[11] |
Lim HT, Yoon JS, Hwang SS, et al. Prevalence and associated sociodemographic factors of myopia in Korean children: the 2005 third Korea National Health and Nutrition Examination Survey (KNHANES Ⅲ)[J]. Jpn J Ophthalmol, 2012, 56(1): 76-81.
|
[12] |
Wu PC, Chen CT, Lin KK, et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial[J]. Ophthalmology, 2018, 125(8): 1239-1250.
|
[13] |
Kanda H, Oshika T, Hiraoka T, et al. Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children: a 2-year multicenter randomized controlled trial[J]. Jpn J Ophthalmol, 2018, 62(5): 537-543.
|
[46] |
Chia A, Li W, Tan D, et al. Full-field electroretinogram findings in children in the atropine treatment for myopia (ATOM2) study[J]. Doc Ophthalmol, 2013, 126(3): 177-186.
|
[47] |
Mcbrien NA, Stell WK, Carr B. How does atropine exert its anti-myopia effects?[J]. Ophthalmic Physiol Opt, 2013, 33(3): 373-378.
|
[48] |
Cho WH, Fang PC, Yu HJ, et al. Analysis of tear film spatial instability for pediatric myopia under treatment[J]. Sci Rep, 2020, 10(1): e14789.
|
[49] |
肖启国,刘祖国,张梅,等. 局部滴用阿托品建立兔干眼模型的评价 [J]. 眼科研究,2005,23(4): 340-343.
|
[50] |
Wen Q, Fan TJ, Tian CL. Cytotoxicity of atropine to human corneal endothelial cells by inducing mitochondrion-dependent apoptosis [J]. Exp Biol Med (Maywood), 2016, 241(13): 1457-1465.
|
[51] |
Tong L, Huang XL, Koh AL, et al. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine[J]. Ophthalmology, 2009, 116(3): 572-579.
|
[52] |
Chia A, Chua WH, Wen L, et al. Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01%, 0.1% and 0.5% [J]. Am J Ophthalmol, 2014, 157(2): 451-457.
|
[53] |
Lu B, Congdon N, Liu X, et al. Associations between near work, outdoor activity, and myopia among adolescent students in rural China: the Xichang Pediatric Refractive Error Study report no. 2[J]. Arch Ophthalmol, 2009, 127(6): 769-775.
|
[54] |
Si JK, Tang K, Bi HS, et al. Orthokeratology for myopia control: a meta-analysis[J]. Optom Vis Sci, 2015, 92(3): 252-257.
|
[55] |
Janowski M, Bulte JW, Handa JT, et al. Concise review: using stem cells to prevent the progression of myopia——a concept [J]. Stem Cells, 2015, 33(7): 2104-2113.
|
[56] |
郑玮. 卡替洛尔联合阿托品在青少年近视治疗中的作用分析 [J]. 沈阳药科大学学报,2021,38(S2):63.
|