[1] |
Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65.
|
[2] |
Keilty RA. The bacterial flora of the normal conjunctiva with comparative nasal culture study[J]. American Journal of Ophthalmology, 1930, 13(10): 876-879.
|
[3] |
Dong Q, Brulc JM, Iovieno A, et al. Diversity of bacteria at healthy human conjunctiva[J]. Investigative Ophthalmology Visual Science, 2011, 52(8): 5408-5413.
|
[4] |
Kang Y, Zhang H, Hu M, et al. Alterations in the ocular surface microbiome in traumatic corneal ulcer patients[J]. Investigative ophthalmology visual science, 2020, 61(6): 35.
|
[5] |
Zhou Y, Holland MJ, Makalo P, et al. The conjunctival microbiome in health and trachomatous disease: a case control study[J]. Genome medicine, 2014, 6(11): 1-10.
|
[6] |
Kang Y, Lin S, Ma X, et al. Strain heterogeneity, cooccurrence network, taxonomic composition and functional profile of the healthy ocular surface microbiome[J]. Eye and Vision, 2021, 8(1): 1-12.
|
[7] |
Ozkan J, Willcox MD. The ocular microbiome: molecular characterisation of a unique and low microbial environment[J]. Current eye research, 2019, 44(7): 685-694.
|
[8] |
Thiel H, Schumacher U. Normal flora of the human conjunctiva: examination of 135 persons of various ages[J]. Klinische monatsblatter fur Augenheilkunde, 1994, 205(6): 348-357.
|
[9] |
Cavuoto KM, Mendez R, Miller D, et al. Effect of clinical parameters on the ocular surface microbiome in children and adults[J]. Clinical ophthalmology, 2018, 12: 1189.
|
[10] |
Wen X, Miao L, Deng Y, et al. The influence of age and sex on ocular surface microbiota in healthy adults[J]. Investigative Ophthalmology Visual Science, 2017, 58(14): 6030-6037.
|
[11] |
Ozkan J, Nielsen S, Diez-Vives C, et al. Temporal stability and composition of the ocular surface microbiome[J]. Scientific reports, 2017, 7(1): 1-11.
|
[12] |
Versura P, Giannaccare G, Campos EC. Sex-steroid imbalance in females and dry eye[J]. Current Eye Research, 2015, 40(2): 162-175.
|
[13] |
Kugadas A, Christiansen SH, Sankaranarayanan S, et al. Impact of microbiota on resistance to ocular Pseudomonas aeruginosa-induced keratitis[J]. PLoS Pathogens, 2016, 12(9): e1005855.
|
[14] |
Kugadas A, Wright Q, Geddes-Mcalister J, et al. Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA[J]. Investigative ophthalmology visual science, 2017, 58(11): 4593-4600.
|
[15] |
Leger AJS, Desai JV, Drummond RA, et al. An ocular commensal protects against corneal infection by driving an interleukin-17 response from mucosal γδ T cells[J]. Immunity, 2017, 47(1): 148-158.
|
[16] |
Ge C, Wei C, Yang BX, et al. Conjunctival microbiome changes associated with fungal keratitis: metagenomic analysis[J]. International Journal of Ophthalmology, 2019, 12(2): 10-16.
|
[17] |
Sai PG, Jayasudha R, Chakravarthy SK, et al. Alterations in the ocular surface fungal microbiome in fungal keratitis patients[J]. Microorganisms, 2019, 7(9): 335-344.
|
[18] |
Tuzhikov A, Dong Q, Panchin A, et al. Keratitis-induced changes to the homeostatic microbiome at the human cornea[J]. Investigative Ophthalmology Visual Science, 2013, 54(15): 2891-2895.
|
[19] |
Cavuoto KM, Galor A, Banerjee S. Ocular surface microbiome alterations are found in both eyes of individuals with unilateral infectious keratitis[J]. Translational vision science & technology, 2021, 10(2): 19-21.
|
[20] |
Lee SH, Oh DH, Jung JY, et al. Comparative ocular microbial communities in humans with and without blepharitis[J]. Investigative ophthalmology visual science, 2012, 53(9): 5585-5593.
|
[21] |
Watters GA, Turnbull PR, Swift S, et al. Ocular surface microbiome in meibomian gland dysfunction[J]. Clinical Experimental Ophthalmology, 2017, 45(2): 105-111.
|
[22] |
Zhao F, Zhang D, Ge C, et al. Metagenomic profiling of ocular surface microbiome changes in meibomian gland dysfunction[J]. Investigative ophthalmology visual science, 2020, 61(8): 22.
|
[23] |
Albietz JM, Lenton LM. Effect of antibacterial honey on the ocular flora in tear deficiency and meibomian gland disease[J]. Cornea, 2006, 25(9): 1012-1019.
|
[24] |
Cavuoto KM, Banerjee S, Galor A. Relationship between the microbiome and ocular health[J]. The Ocular Surface, 2019, 17(3): 384-392.
|
[25] |
Graham JE, Moore JE, Jiru X, et al. Ocular pathogen or commensal: a PCR-based study of surface bacterial flora in normal and dry eyes[J]. Investigative ophthalmology visual science, 2007, 48(12): 5616-5623.
|
[26] |
Stapleton F, Naduvilath T, Keay L, et al. Risk factors and causative organisms in microbial keratitis in daily disposable contact lens wear[J]. PLoS One, 2017, 12(8): e0181343.
|
[27] |
Shin H, Price K, Albert L, et al. Changes in the eye microbiota associated with contact lens wearing[J]. MBio, 2016, 7(2): e00198-e00116.
|
[28] |
Sankaridurg PR, Markoulli M, De La Jara PL, et al. Lid and conjunctival micro biota during contact lens wear in children[J]. Optometry Vision Science, 2009, 86(4): 312-317.
|
[29] |
Sankaridurg P, Willcox M, Sharma S, et al. Haemophilus influenzae adherent to contact lenses associated with production of acute ocular inflammation[J]. Journal of Clinical Microbiology, 1996, 34(10): 2426-2431.
|
[30] |
Zhang H, Zhao F, Hutchinson DS, et al. Conjunctival microbiome changes associated with soft contact lens and orthokeratology lens wearing[J]. Investigative Ophthalmology Visual Science, 2017, 58(1): 128-136.
|
[31] |
Pickering H, Palmer CD, Houghton J, et al. Conjunctival microbiome-host responses are associated with impaired epithelial cell health in both early and late stages of trachoma[J]. Frontiers in cellular infection microbiology, 2019: 297.
|
[32] |
Ham B, Hwang HB, Jung SH, et al. Distribution and diversity of ocular microbial communities in diabetic patients compared with healthy subjects[J]. Current Eye Research, 2018, 43(3): 314-324.
|
[33] |
Li S, Yi G, Peng H, et al. How ocular surface microbiota debuts in type 2 diabetes mellitus[J]. Frontiers in Cellular Infection Microbiology, 2019: 202.
|
[34] |
De Paiva CS, Jones DB, Stern ME, et al. Altered mucosal microbiome diversity and disease severity in Sjögren syndrome[J]. Scientific Reports, 2016, 6(1): 1-11.
|
[35] |
Zaheer M, Wang C, Bian F, et al. Protective role of commensal bacteria in Sjçgren Syndrome[J]. Journal of Autoimmunity, 2018, 93: 45-56.
|
[36] |
Yau JWK, Hou J, Tsui SKW, et al. Characterization of ocular and nasopharyngeal microbiome in allergic rhinoconjunctivitis[J]. Pediatric Allergy Immunology, 2019, 30(6): 624-631.
|
[37] |
Vishwakarma P, Mitra S, Beuria T, et al. Comparative profile of ocular surface microbiome in vernal keratoconjunctivitis patients and healthy subjects[J]. Graefe′s Archive for Clinical and Experimental Ophthalmology, 2021, 259(7): 1925-1933.
|
[38] |
Grice EA, Kong HH, Renaud G, et al. A diversity profile of the human skin microbiota[J]. Genome Research, 2008, 18(7): 1043-1050.
|
[39] |
Mshangila B, Paddy M, Kajumbula H, et al. External ocular surface bacterial isolates and their antimicrobial susceptibility patterns among pre-operative cataract patients at Mulago National Hospital in Kampala, Uganda[J]. BMC ophthalmology, 2013, 13(1): 1-6.
|
[40] |
Dave SB, Toma HS, Kim SJ. Changes in ocular flora in eyes exposed to ophthalmic antibiotics[J]. Ophthalmology, 2013, 120(5): 937-941.
|
[41] |
Ozkan J, Willcox MD, Rathi VM, et al. Effect of antibiotic drops on adverse events during extended lens wear[J]. Optometry Vision Science, 2014, 91(1): 13-23.
|
[42] |
Yin VT, Weisbrod DJ, Eng KT, et al. Antibiotic resistance of ocular surface flora with repeated use of a topical antibiotic after intravitreal injection[J]. JAMA ophthalmology, 2013, 131(4): 456-461.
|
[43] |
Willcox MD. Characterization of the normal microbiota of the ocular surface[J]. Experimental Eye Research, 2013, 117: 99-105.
|
[44] |
Wen X, Hu X, Miao L, et al. Epigenetics, microbiota, and intraocular inflammation: New paradigms of immune regulation in the eye[J]. Progress in Retinal Eye Research, 2018, 64: 84-95.
|
[45] |
Chisari G, Chisari EM, Borzi AM, et al. Aging eye microbiota in dry eye syndrome in patients treated with Enterococcus faecium and Saccharomyces boulardii[J]. Current Clinical Pharmacology, 2017, 12(2): 99-105.
|
[46] |
Chisari G, Chisari E, Francaviglia A, et al. The mixture of bifidobacterium associated with fructo-oligosaccharides reduces the damage of the ocular surface[J]. Clin Ter, 2017, 168(3): e181-e185.
|