切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2025, Vol. 15 ›› Issue (04) : 252 -256. doi: 10.3877/cma.j.issn.2095-2007.2025.04.011

综述

基于球面像差屈光手术方式选择及术后视觉质量影响因素的研究进展
康梦田, 郑燕, 管鑫龙, 翟长斌()   
  1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2025-06-22 出版日期:2025-08-28
  • 通信作者: 翟长斌
  • 基金资助:
    国家重点研发计划诊疗装备与生物医用材料重点专项2022年度项目(22YFC2404500)

Research progress on refractive surgery selection and postoperative visual quality determinants based on spherical aberration

Mengtian Kang, Yan Zheng, Xinlong Guan, Changbin Zhai()   

  1. Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
  • Received:2025-06-22 Published:2025-08-28
  • Corresponding author: Changbin Zhai
引用本文:

康梦田, 郑燕, 管鑫龙, 翟长斌. 基于球面像差屈光手术方式选择及术后视觉质量影响因素的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(04): 252-256.

Mengtian Kang, Yan Zheng, Xinlong Guan, Changbin Zhai. Research progress on refractive surgery selection and postoperative visual quality determinants based on spherical aberration[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2025, 15(04): 252-256.

球面像差(SA)是影响屈光手术后视觉质量的核心因素。近年来,随着屈光手术技术的不断发展,基于SA特征的个体化手术方案选择已成为优化术后视觉质量的关键策略。有研究结果表明,飞秒激光小切口角膜基质透镜取出术(SMILE)术后SA增加量普遍低于飞秒激光辅助准分子激光原位角膜磨镶术(FS-LASIK);光学区大小与瞳孔直径的匹配关系、术前屈光状态及角膜生物力学特性共同决定术后SA水平。基于SA特征的个体化手术方案选择是优化术后视觉质量的关键,未来应建立整合多维度参数的预测模型,推动屈光手术向精准医疗方向发展。

Spherical aberration (SA) is a core factor affecting postoperative visual quality in refractive surgery. With the continuous development of refractive surgery techniques, individualized surgical protocol selection based on SA characteristics has become a key strategy for optimizing postoperative visual quality. It has been demonstrated that the increase in SA following small incision lenticule extraction (SMILE) is generally lower than that after femtosecond laser-assisted laser in situ keratomileusis (FS-LASIK). The matching relationship between optical zone size and pupil diameter, preoperative refractive status, and corneal biomechanical properties collectively determine postoperative SA levels. Individualized surgical protocol selection based on SA characteristics is crucial for optimizing postoperative visual quality. Future research should establish predictive models integrating multi-dimensional parameters to advance refractive surgery toward precision medicine.

[1]
GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study[J]. Lancet Glob Health, 2021, 9(2): e144-e160.
[2]
Gurnani B, Kaur K. Recent advances in refractive surgery: an overview[J]. Clin Ophthalmol, 2024, 18: 2467-2472.
[3]
Yoon G, Macrae S, Williams DR, et al. Causes of spherical aberration induced by laser refractive surgery[J]. J Cataract Refract Surg, 2005, 31(1): 127-135.
[4]
Atchison DA, Charman WN. Thomas Young′s contribution to visual optics: the Bakerian Lecture " on the mechanism of the eye" [J]. J Vis, 2010, 10(12): 16.
[5]
Amano S, Amano Y, Yamagami S, et al. Age-related changes in corneal and ocular higher-order wavefront aberrations[J]. Am J Ophthalmol, 2004, 137(6): 988-992.
[6]
Al-Somali A, Abouollo HM, Al-Jindan M, et al. Corneal asphericity and its related factors[J]. Med Hypothesis Discov Innov Ophthalmol, 2023, 12(3): 142-149.
[7]
Jiménez JR, Alarcón A, Anera RG, et al. Hyperopic Q-optimized algorithms: a theoretical study on factors influencing optical quality[J]. Biomed Opt Express, 2017, 8(3): 1405-1414.
[8]
Gatinel D, Malet J, Hoang-Xuan T, et al. Corneal asphericity change after excimer laser hyperopic surgery: theoretical effects on corneal profiles and corresponding Zernike expansions[J]. Invest Ophthalmol Vis Sci, 2004, 45(5): 1349-1359.
[9]
周传清,余雷,陆培华,等. 准分子屈光手术中非球面系数对球差以及切削深度的影响[J]. 光学精密工程200715(2):167-172.
[10]
Cook WH, McKelvie J, Wallace HB, et al. Comparison of higher order wavefront aberrations with four aberrometers[J]. Indian J Ophthalmol, 2019, 67(7): 1030-1035.
[11]
Anayol MA, Güler E, Yaĝci R, et al. Comparison of central corneal thickness, thinnest corneal thickness, anterior chamber depth, and simulated keratometry using galilei, Pentacam, and Sirius devices[J]. Cornea, 2014, 33(6): 582-586.
[12]
Bamashmus MA, Hubaish K, Alawad M, et al. Functional outcome and patient satisfaction after laser in situ keratomileusis for correction of myopia and myopic astigmatism[J]. Middle East Afr J Ophthalmol, 2015, 22(1): 108-114.
[13]
Goldstein JE, Bradley C, Gross AL, et al. The NEI VFQ-25C: Calibrating items in the national eye institute visual function questionnaire-25 to enable comparison of outcome measures[J]. Transl Vis Sci Technol, 2022, 11(5): 10.
[14]
Queirós A, Villa-Collar C, Gutiérrez AR, et al. Quality of life of myopic subjects with different methods of visual correction using the NEI RQL-42 questionnaire[J]. Eye Contact Lens, 2012, 38(2): 116-121.
[15]
Kishimoto F, Ohtsuki H. Comparison of VF-14 scores among different ophthalmic surgical interventions[J]. Acta Med Okayama, 2012, 66(2): 101-110.
[16]
Rocha KM, Vabre L, Harms F, et al. Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology[J]. J Refract Surg, 2007, 23(9): 953-959.
[17]
Villegas EA, Alcón E, Artal P. Optical quality of the eye in subjects with normal and excellent visual acuity[J]. Invest Ophthalmol Vis Sci, 2008, 49(10): 4688-4696.
[18]
López-Gil N, Peixoto-de-Matos SC, Thibos LN, et al. Shedding light on night myopia[J]. J Vis, 2012, 12(5): 4.
[19]
Bottos KM, Leite MT, Aventura-Isidro M, et al. Corneal asphericity and spherical aberration after refractive surgery[J]. J Cataract Refract Surg, 2011, 37(6): 1109-1115.
[20]
Qazi MA, Roberts CJ, Mahmoud AM, et al. Topographic and biomechanical differences between hyperopic and myopic laser in situ keratomileusis[J]. J Cataract Refract Surg, 2005, 31(1): 48-60.
[21]
Wang Y, Zheng J, Guo Z, et al. Efficacy and safety of small-incision corneal intrastromal lenticule implantation for hyperopia correction: a systematic review and meta-analysis[J]. Front Med, 2024, 11: 1320235.
[22]
Kohnen T, Mahmoud K, Bühren J. Comparison of corneal higher-order aberrations induced by myopic and hyperopic LASIK[J]. Ophthalmology, 2005, 112(10): 1692.
[23]
白燕慧,王卫群. 准分子激光原位角膜磨镶术(LASIK)后球面像差改变的研究[J]. 中华眼外伤职业眼病杂志200931(2):111-113.
[24]
Wu Y, Huang Y, Wang SH, et al. Comparative study of objective visual quality between FS-LASIK and SMART in myopia[J]. Int J Ophthalmol, 2022, 15(3): 502-509.
[25]
汪凌,陈俐君,朱叶,等. SMILE,FS-LASIK和TPRK术后高阶像差的变化和比较[J]. 中华眼视光学与视觉科学杂志202527(1):46-55.
[26]
Zhou C, Li Y, Wang Y, et al. Comparison of visual quality after SMILE correction of low-to-moderate myopia in different optical zones[J]. Int Ophthalmol, 2023, 43(10): 3623-3632.
[27]
Hamam KM, Gbreel MI, Elsheikh R, et al. Outcome comparison between wavefront-guided and wavefront-optimized photorefractive keratectomy: A systematic review and meta-analysis[J]. Indian J Ophthalmol, 2020, 68(12): 2691-2698.
[28]
Feng Y, Yu J, Wang Q. Meta-analysis of wavefront-guided vs. wavefront-optimized LASIK for myopia[J]. Optom Vis Sci, 2011, 88(12): 1463-1469.
[29]
Wallerstein A, Caron-Cantin M, Gauvin M, et al. Primary topography-guided LASIK: refractive, visual, and subjective quality of vision outcomes for astigmatism -2.00 diopters[J]. J Refract Surg, 2019, 35(2): 78-86.
[30]
Kim J, Choi SH, Lim DH, et al. Topography-guided versus wavefront-optimized laser in situ keratomileusis for myopia: Surgical outcomes[J]. J Cataract Refract Surg, 2019, 45(7): 959-965.
[31]
Zhang Y, Chen Y. A randomized comparative study of topography-guided versus wavefront-optimized FS-LASIK for correcting myopia and myopic astigmatism[J]. J Refract Surg, 2019, 35(9): 575-582.
[32]
Jiménez JR, Alarcón A, Anera RG, et al. Q-optimized algorithms: theoretical analysis of factors influencing visual quality after myopic corneal refractive surgery[J]. J Refract Surg, 2016, 32(9): 612-617.
[33]
Shetty R, Shroff R, Deshpande K, et al. A prospective study to compare visual outcomes between wavefront-optimized and topography-guided ablation profiles in contralateral eyes with myopia[J]. J Refract Surg, 2017, 33(1): 6-10.
[34]
Zheng H, Song L. Visual quality of Q-value-guided LASIK in the treatment of high myopia[J]. Eye Sci, 2011, 26(4): 208-210.
[35]
Zhang KP, Fang X, Zhang Y, et al. Comparison of Q-value-guided laser-assisted in situ keratomileusis and standard laser in situ keratomileusis for myopia: A meta-analysis[J]. Medicine (Baltimore), 2020, 99(45): e21563.
[36]
Martínez CE, Applegate RA, Klyce SD, et al. Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy[J]. Arch Ophthalmol, 1998, 116(8): 1053-1062.
[37]
Nilagiri VK, Suheimat M, Lambert AJ, et al. Subjective measurement of the Stiles-Crawford effect with different field sizes[J]. Biomed Opt Express, 2021, 12(8): 4969-4981.
[38]
Zhou X, Qin B, Han T, et al. Long-term observation of higher-order aberrations and microdistortions in bowman′s layer after small incision lenticule extraction for the correcting myopia with spherical equivalent higher than -9.0 diopters[J]. Front Med, 2022, 9: 814810.
[39]
Wu HK. Astigmatism and LASIK[J]. Curr Opin Ophthalmol, 2002, 13(4): 250-255.
[40]
Kemraz D, Cheng XY, Shao X, et al. Age-related changes in corneal spherical aberration[J]. J Refract Surg, 2018, 34(11): 760-767.
[41]
Fang L, Ma W, Wang Y, et al. Theoretical analysis of wave-front aberrations induced from conventional laser refractive surgery in a biomechanical finite element model[J]. Invest Ophthalmol Vis Sci, 2020, 61(5): 34.
[42]
Arbelaez MC, Arba Mosquera S. The SCHWIND AMARIS total-tech laser as an all-rounder in refractive surgery[J]. Middle East Afr J Ophthalmol, 2009, 16(1): 46-50.
[43]
Mifflin MD, Mortensen XM, Betts BS, et al. Accuracy of Alcon WaveLight® EX500 optical pachymetry during LASIK[J]. Clin Ophthalmol, 2017, 11: 1513-1517.
[44]
Petroff DJ, Nasir AA, Moin KA, et al. Evaluating the accuracy of artificial intelligence (AI)-generated illustrations for laser-assisted in situ keratomileusis (LASIK), photorefractive keratectomy (PRK), and small incision lenticule extraction (SMILE)[J]. Cureus, 2024, 16(8): e67747.
[45]
Moshirfar M, Moin KA, Omidvarnia S, et al. LASIK versus PRK based on increased risk of corneal haze: assessing current decision-making capabilities of six artificial intelligence models in refractive surgery[J]. J Refract Surg, 2024, 40(8): e533-e538.
[46]
Hira S, Klein Heffel K, Mehmood F, et al. Comparison of refractive surgeries (SMILE, LASIK, and PRK) with and without corneal crosslinking: systematic review and meta-analysis[J]. J Cataract Refract Surg, 2024, 50(5): 523-533.
[47]
Gong Q, Zhang S, Jiang L, et al. The effect of nerve growth factor on corneal nerve regeneration and dry eye after LASIK[J]. Exp Eye Res, 2021, 203: 108428.
[1] 刘倩, 杨文利, 熊瑛, 李栋军, 王子杨, 陈伟, 李逸丰, 崔蕊, 沈琳. OPD-scanⅢ与iTrace测量ICL术后眼高阶像差一致性的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(02): 99-103.
[2] 康梦田, 包陈颖, 宋芊芊, 李婧, 郑燕, 李仕明, 翟长斌, 王宁利. 近视眼屈光手术患者术后预期和依从性的流行学病学研究[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(01): 40-44.
[3] 刘红杰, 崔燕, 刘霞, 张珍珍, 王丽花, 任延军. 飞秒激光小切口角膜基质透镜取出术对屈光参差患者调节功能影响的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(06): 341-345.
[4] 郑燕, 翟长斌, 付彩云, 张丽, 王玥, 胡雅斌, 柳静. 准分子激光原位角膜磨镶术联合快速角膜交联术后角膜光密度变化的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(06): 327-334.
[5] 左航嘉, 林美婷, 陈泳林, 郑仕洁, 胡柯. 景深延长型人工晶状体在不同眼轴白内障患者中应用效果对比的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(05): 300-304.
[6] 江卓婷, 高妍, 李春晖. 相干光断层扫描在角膜屈光手术术前筛查中应用的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(04): 247-251.
[7] 刘佳, 贺瑞, 李晓娜. 断层扫描生物力学指数应用于屈光手术术前早期圆锥角膜筛查的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(06): 341-346.
[8] 王晓宇, 李亚新, 刘一昀, 耿嘉懿, 秦锐, 李炎城, 敖明昕, 刘德海, 齐虹. 不同设计多焦点人工晶状体植入后视觉质量差异的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(04): 210-215.
[9] 姜雅琴, 刘丽峰, 刘秀花, 张亚丽. 白内障术后早期患者配戴绷带镜对泪膜质量及其动态变化影响的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(04): 204-209.
[10] 姚沁楠, 万修华. 有晶状体眼后房型人工晶状体植入术与角膜屈光手术治疗高度近视眼有效性、安全性及可预测性的Meta分析[J/OL]. 中华眼科医学杂志(电子版), 2021, 11(06): 346-352.
[11] 刘兆川, 宋旭东. 重视景深延长型人工晶状体在屈光性白内障手术中的应用[J/OL]. 中华眼科医学杂志(电子版), 2021, 11(04): 193-197.
[12] 李仕明, 何曦, 翟长斌. 重视角膜屈光手术后调节功能的变化及其影响[J/OL]. 中华眼科医学杂志(电子版), 2020, 10(05): 257-261.
[13] 蒋政, 王华, 罗栋强. 有晶状体眼后房型人工晶状体植入术矫正高度近视眼术后视觉质量的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2019, 09(05): 305-311.
[14] 曾丽娟, 韦琦, 左慧懿, 谭少健. 飞秒激光小切口角膜基质透镜取出术矫正中高度近视眼术后早期角膜后表面高度变化及影响因素的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2019, 09(02): 105-110.
[15] 申芙蓉. 民航飞行学员角膜屈光术后高阶像差变化及角膜后表面稳定性的研究[J/OL]. 中华临床医师杂志(电子版), 2019, 13(05): 357-362.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?