切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (06) : 326 -331. doi: 10.3877/cma.j.issn.2095-2007.2022.06.002

论著

新型微创内路三联手术后房水外流泵功能变化的临床研究
桑青1, 辛晨1, 王瑾1, 毛迎燕1, 杨迪亚1, 牟大鹏1, 张烨1, 王怀洲1, 王宁利1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2022-11-10 出版日期:2022-12-28
  • 通信作者: 王宁利
  • 基金资助:
    北京市属医学科研院所公益发展改革试点项目(2018-2)

The functional changes of aqueous outflow pump after a new type of trabeculotome tunnelling trabeculoplasty

Qing Sang1, Chen Xin1, Jin Wang1, Yingyan Mao1, Diya Yang1, Dapeng Mu1, Ye Zhang1, Huaizhou Wang1, Ningli Wang1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Institute of Ophthalmology and Visual Sciences, Beijing 100730, China
  • Received:2022-11-10 Published:2022-12-28
  • Corresponding author: Ningli Wang
引用本文:

桑青, 辛晨, 王瑾, 毛迎燕, 杨迪亚, 牟大鹏, 张烨, 王怀洲, 王宁利. 新型微创内路三联手术后房水外流泵功能变化的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 326-331.

Qing Sang, Chen Xin, Jin Wang, Yingyan Mao, Diya Yang, Dapeng Mu, Ye Zhang, Huaizhou Wang, Ningli Wang. The functional changes of aqueous outflow pump after a new type of trabeculotome tunnelling trabeculoplasty[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(06): 326-331.

目的

利用相位敏感光学相干断层扫描(PHS-OCT)探讨新型微创内路三联手术(3T)术后房水外流泵功能的变化。

方法

收集2022年3月至2022年9月于首都医科大学附属北京同仁医院眼科中心就诊既往无抗青光眼手术史的原发性开角型青光眼(POAG)患者10例(10只眼)进行前瞻性研究。其中,男性7例(7只眼),女性3例(3只眼);年龄30~64岁,平均年龄(45.3±10.5)岁。所有受试者均接受新型3T手术治疗。检测并记录患者术眼术前和术后3个月的眼压,检测结果以眼压区间和平均值进行描述;分别检测并记录患者术前和术后术眼小梁网(TM)3个检测点位共计30个点位的TM外部区域运动速度、TM外部区域振幅及Schlemm′s管横截面长轴直径并计算Schlemm′s管横截面面积变化幅度,检测与计算结果进行正态性检验,符合正态分布者采用(±s)描述,并采用配对t检验进行比较。

结果

全部患者10例(10只眼),术前患眼视野平均缺损值为(13.5±5.0)dB;术前未使用降眼压药物时患眼眼压25.3~48.5 mmHg(1 mmHg=0.133 kPa),平均眼压(32.9±8.7)mmHg;术前使用降眼压药物患眼眼压15.6~25.0 mmHg,平均眼压(20.9±3.4)mmHg。术后3个月时眼压14.2~20.5 mmHg,平均眼压(16.4±1.7)mmHg;术前和术后术眼TM3个检测点位共计30个点位的TM外部区域运动速度、TM外部区域振幅、Schlemm′s管横截面长轴直径及Schlemm′s管横截面面积变化幅度分别为(22.7±5.6)μm/s和(17.3±3.3)μm/s、(0.21±0.06)μm和(0.17±0.04)μm、(180.0±9.1)μm和(370.5±18.6)μm及(37.7±7.6)μm2和(62.0±11.6)μm2。术后TM30个检测点位的TM外部区域运动速度降低、TM外部区域振幅减小、Schlemm′s管横截面长轴直径加大且Schlemm′s管横截面面积变化幅度加大,经t检验其差异具有统计学意义(t=3.51,2.09,-18.35,-3.93;P<0.05)。

结论

新型3T手术可以重塑并加强房水外流泵功能。利用PHS-OCT可以评估新型3T手术术后房水外流泵功能,手术后房水外流泵功能增强。

Objective

To investigate the changes of aqueous outflow pump function after a new trabeculotome tunnelling trabeculoplasty (3T) using phase sensitive optical coherence tomography (PHS-OCT).

Methods

From March 2022 to September 2022, 10 patients (10 eyes) with primary open-angle glaucoma (POAG) who had no previous history of anti-glaucoma surgery were collected from the Beijing Tongren Eye Center, Beijing Tongren Hospital affiliated to Capital Medical University for a prospective study. Among them, 7 males (7 eyes) and 3 females (3 eyes) with an average age of (45.3±10.5) years who were ranged from 30 to 64 years. All POAG patients were treated with new 3T surgery. The intraocular pressure (IOP) of POAG patients before and after operation for 3 months was recorded, and described by the interval and average IOP value. The movement speed of TM external area, amplitude of TM external area, diameter of the major axis of the cross section of Schlemm′s tube and the change amplitude of the cross section area of Schlemm′s tube were measured and recorded at a total of 30 points of the patient′s trabecular meshwork (TM) before and after surgery. All data was tested for normality, and described by (±s), and compared with the paired substance t test if those that conformed to the normal distribution.

Results

All 10 patients (10 eyes) had the average visual field defect value of the affected eye before operation was (13.5±5.0) dB. The IOP of the affected eye was 25.3 to 48.5 mmHg (1 mmHg=0.133 kPa), and the average IOP was(32.9±8.7) mmHg without the use of IOP lowering drugs before operation. The IOP was 15.6 to 25.0 mmHg with the average IOP of (20.9±3.4) mmHg under using of IOP lowering drugs before operation. After operation for 3 months, the IOP was 14.2 to 20.5 mmHg with the average IOP of (16.4±1.7) mmHg. The movement velocity of TM external region, amplitude of TM external region, diameter of major axis of Schlemm′s tube cross section and the change amplitude of Schlemm′s tube cross section area at 30 points of TM 3 detection points before and after operation were (22.7±5.6) μm/s and (17.3±3.3)μm/s, (0.21±0.06)μm and (0.17±0.04)μm, (180.0±9.1)μm and (370.5±18.6) μm and (37.7±7.6) μm2 and (62.0 ± 11.6) μm2. After operation, the movement speed and the amplitude of of TM external area both decreased, while the diameter of the major axis of the cross section of Schlemm′s tube increased, and the change range of the cross section area of Schlemm′s tube increased at the 30 testing points of TM. There were statistically significant differences in the movement speed and the amplitude of of TM external area, the diameter of the major axis of the cross section and the change range of the cross section area of Schlemm′s tube befor and after operation through t test (t=3.51, 2.09, -18.35, -3.93; P<0.05).

Conclusions

PHS-OCT can be used to evaluate the function of aqueous outflow pump after a new type of 3T surgery, and the function of aqueous outflow pump after surgery is enhanced.

图3 相位敏感光学相干断层扫描患者前房角图像和小梁网运动速度及振幅坐标图 图3A示被检测的前房角;图3B为患者小梁网运动与心跳之间的比配;图3C为小梁网运动的最大速度与振幅,红色轨迹为数字脉冲计所记录的心跳信号,黑色轨迹为根据心跳信号经滤过后的小梁网运动信号;图3D中蓝色轨迹表示小梁网运动的速度,橙色轨迹表示小梁网的振幅。
表1 患者术眼房水外流泵功能相关指标手术前后的比较
[1]
晏兴云,贺平,刘静. 基层眼科小梁切除术405例并发症分析[J]. 国际眼科杂志201515(4):2.
[2]
辛晨,汪军,刘广峰,等. 青光眼微创手术进展[J]. 眼科新进展201535(1):6.
[3]
中华医学会眼科学分会青光眼学组,中国医师协会眼科医师分会青光眼学组. 中国青光眼指南(2020年)[J]. 中华眼科杂志202056(8):14.
[4]
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.
[5]
Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020[J]. Br J Ophthalmol, 2006, 90(3): 262-267.
[6]
Casson RJ, Chidlow G, Wood JP, et al. Definition of glaucoma: clinical and experimental concepts[J]. Clin Exp Ophthalmol, 2012, 40(4): 341-349.
[7]
Goel M, Picciani RG, Lee RK, et al. Aqueous Humor Dynamics: A Review[J]. Open Ophthalmol J, 2010, 4(1): 52-59.
[8]
Wong D. Non-penetrating glaucoma surgery for advanced open-angle glaucoma[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(8): 1479.
[9]
Tektas OY, Lütjen-Drecoll E. Structural changes of the trabecular meshwork in different kinds of glaucoma[J]. Exp Eye Res, 2009, 88(4): 769-775.
[10]
Ellingsen BA, Grant WM. The relationship of pressure and aqueous outflow in enucleated human eyes[J]. Invest Ophthalmol, 1971, 10 (6): 430-437.
[11]
Buskirk E. Anatomic correlates of changing aqueous outflow facility in excised human eyes[J]. Investigative Ophthalmology & Visual Science, 1982, 22(5): 625-632.
[12]
Andrew NH, Akkach S, Casson RJ. A review of aqueous outflow resistance and its relevance to micro-invasive glaucoma surgery[J]. Surv Ophthalmol, 2020, 65(1): 18-31.
[13]
Gillmann K, Mansouri K. Minimally Invasive Glaucoma Surgery: Where Is the Evidence?[J] Asia Pac J Ophthalmol (Phila), 2020, 9(3): 203-214.
[14]
Hann CR, Bentley MD, Vercnocke A, et al. Imaging the aqueous humor outflflow pathway in human eyes by three-dimensional micro-computed tomography (3D micro-CT)[J]. Exp Eye Res, 2011, 92(2): 104-111.
[15]
Huang AS, Camp A, Xu BY, et al. Aqueous Angiography: Aqueous Humor Outflow Imaging in Live Human Subjects[J]. Ophthalmology, 2017, 124(8): 1249-1251.
[16]
Li P, Reif R, Zhi Z, et al. Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes[J]. J Biomed Opt, 2012, 17(7): 076026.
[17]
Ramos RF, Sumida GM, Stamer WD. Cyclic mechanical stress and trabecular meshwork cell contractility[J]. Invest Ophthalmol Vis Sci, 2009, 50(8): 3826-3832.
[18]
Luna C, Li G, Qiu J, et al. Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(12): 5805-5810.
[19]
Du R, Xin C, Xu J, et al. Pulsatile Trabecular Meshwork Motion: An Indicator of Intraocular Pressure Control in Primary Open-Angle Glaucoma[J]. J Clin Med, 2022, 11(10): 2696.
[20]
Stamer WD, Clark AF. The many faces of the trabecular meshwork cell[J]. Exp Eye Res, 2017, 158: 112-123.
[21]
Last JA, Pan T, Ding Y, et al. Elastic Modulus Determination of Normal and Glaucomatous Human Trabecular Meshwork[J]. Invest Ophthalmol Vis, 2011, 52(5): 2147-2152.
[22]
Johnstone M, Xin C, Tan J, et al. Aqueous outflow regulation - 21st century concepts[J]. Prog Retin Eye Res, 2021, 83: 100917.
[23]
Shuman MA, Polansky JR, Merkel C, et al. Tissue plasminogen activator in cultured human trabecular meshwork cells. Predominance of enzyme over plasminogen activator inhibitor[J]. Invest Ophthalmol Vis Sci, 1988, 29(3): 401-405.
[24]
Peotter JL, Phillips J, Tong T, et al. Involvement of Tiam1, RhoG and ELMO2/ILK in Rac1-mediated phagocytosis in human trabecular meshwork cells[J]. Exp Cell Res, 2016, 347(2): 301-311.
[25]
Xin C, Tian N, Li M, et al.Mechanism of the reconstruction of aqueous outflow drainage[J]. Sci China Life Sci, 2018, 61(5): 534-540.
[26]
Li P, Shen TT, Johnstone M, et al. Pulsatile motion of the trabecular meshwork in healthy human subjects quantified by phase-sensitive optical coherence tomography[J]. Biomed Opt Express, 2013, 4(10): 2051-2065.
[27]
Xin C, Song S, Johnstone M, et al. Quantification of Pulse-Dependent Trabecular Meshwork Motion in Normal Humans Using Phase-Sensitive OCT[J]. Invest Ophthalmol Vis Sci, 2018, 59(8): 3675-3681.
[28]
Hamada M, Ohkoshi K, Inagaki K, et al. Visualization of microaneurysms using optical coherence tomography angiography: comparison of OCTA en face, OCT B-scan, OCT en face, FA, and IA images[J]. Jpn J Ophthalmol, 2018, 62(2): 168-175.
[29]
Gao K, Song S, Johnstone MA, et al. Reduced Pulsatile Trabecular Meshwork Motion in Eyes With Primary Open Angle Glaucoma Using Phase-Sensitive Optical Coherence Tomography[J]. Invest Ophthalmol Vis Sci, 2020, 61(14): 21.
[30]
Li P, Shen TT, Johnstone M, et al. Pulsatile motion of the trabecular meshwork in healthy human subjects quantified by phase-sensitive optical coherence tomography[J]. Biomed Opt Express, 2013, 4(10): 2051-2065.
[1] 李茹月, 庞睿奇, 王宁利. 血脂异常与原发性开角型青光眼发病相关性的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 35-39.
[2] 金杉杉, 熊琨, 王璐, 梁远波. 中国青光眼流行趋势及特征的Meta分析[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 332-340.
[3] 杜非凡, 王雪, 吴志鸿. 基质金属蛋白酶2、基质金属蛋白酶抑制剂2和可溶性CD44在高度近视眼合并原发性开角型青光眼患者房水中的定量研究[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 335-341.
[4] 田佳鑫, 曹凯, 石砚, 辛晨, 杜蓉, 于静, 桑景荭, 王宁利. 原发性开角型青光眼全身危险因素及眼体同治的系统回顾和Meta分析[J]. 中华眼科医学杂志(电子版), 2019, 09(05): 281-291.
[5] 张虹, 王军明. 重视原发性开角型青光眼Schlemm管相关手术降眼压机制的研究[J]. 中华眼科医学杂志(电子版), 2017, 07(05): 193-197.
阅读次数
全文


摘要