切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (05) : 298 -304. doi: 10.3877/cma.j.issn.2095-2007.2022.05.008

综述

水凝胶在角膜修复中的应用研究进展
杜凯玥1, 袁博伟1, 洪晶1,()   
  1. 1. 100191 北京大学第三医院眼科
  • 收稿日期:2022-05-08 出版日期:2022-10-28
  • 通信作者: 洪晶
  • 基金资助:
    国家自然科学基金项目(81970768)

The research and application of hydrogel in corneal repairmen

Kaiyue Du1, Bowei Yuan1, Jing Hong1,()   

  1. 1. Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
  • Received:2022-05-08 Published:2022-10-28
  • Corresponding author: Jing Hong
引用本文:

杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.

Kaiyue Du, Bowei Yuan, Jing Hong. The research and application of hydrogel in corneal repairmen[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(05): 298-304.

水凝胶生物材料具有含水量高、生物相容性好、透明度强和渗透性适宜等优良特性,可模拟角膜的成分和结构,作为细胞和药物的载体,加速角膜损伤的愈合或替代角膜的特定层,在生物医学工程、药物递送和组织工程等领域具有广泛的应用前景。开发和优化用于修复或替代角膜损伤的新型水凝胶是十年来研究的焦点。本文中笔者近年来水凝胶在角膜修复中的研究进展进行综述。

Hydrogel biomaterials have fine properties such as high water content, good biocompatibility, transparency and permeability, which enable to simulate the composition and structure of cornea. As a carrier of cells and drugs, hydrogel biomaterials can accelerate the healing of corneal injury or replace specific layers of cornea, thus being widely applied in biomedical engineering, drug delivery and tissue engineering. The development and optimization of novel hydrogels for repairment of corneal injury has been the main focus of research in the past decade. The research progress of aqueous gel in corneal repair in recent years were reviewed in this paper.

表1 各种水凝胶材料的优缺点
水凝胶种类 优点 缺点
胶原蛋白 是角膜基质成分,生物相容性好;可生物降解;生物粘附和细胞附着好;可交联以改善性能;可通过组装得到与天然组织相似结构 不稳定;降解快;人源胶原蛋白价格昂贵,动物源胶原蛋白有免疫原性、有传染病传播风险[100];在导入细胞时会收缩;机械强度差
明胶 来源于胶原蛋白水解,与胶原蛋白具有相同的氨基酸结构,同样具有可生物降解、生物相容性好、细胞粘附好等优点;廉价;无免疫原性;比胶原蛋白更好的透明度 机械强度差;比胶原蛋白降解更快
壳聚糖 生物相容性好;可生物降解;生物粘附和细胞附着好;有抗菌性;透明度好;机械强度高;廉价 未交联或未加入稳定剂时可在水性条件下溶胀;降解快;孔径、孔隙率小
透明质酸 自然存在于眼睛的玻璃体液中,生物相容性好;可生物降解;无免疫原性;可促进伤口愈合[101] 细胞附着和生物粘附性差[102];注射后可能增加眼压
丝素蛋白水凝胶 可制成各种支架类型,具有高度可调的物理化学特性可生物降解;机械强度大;孔隙率大;廉价 不耐紫外线辐射;不透明;生物相容性不高;凝胶速率慢;刚度高,脆,易碎
脱细胞基质水凝胶 模拟组织微环境,含有生长因子等,生物相容性好;持久存在;透明度佳;天然具有响应性;保留天然细胞表型 机械强度差;潜在传染病风险
海藻酸钠水凝胶 廉价;生物相容性好 降解慢;组织粘附和细胞附着差;渗透性差;机械强度差
胶原蛋白偶联聚乙二醇基水凝胶 支架结构和化学成分易于控制,机械性能可调,生物降解性可调;廉价,制作简单 生物相容性差,可能存在免疫排斥、炎症反应;组织粘附和细胞附着差;透明度差
[69]
Cui X, Soliman BG, Alcala-Orozco CR, et al. Rapid Photocrosslinking of Silk Hydrogels with High Cell Density and Enhanced Shape Fidelity[J]. Adv Healthc Mater, 2020, 9(4): e1901667.
[70]
Piluso S, Flores Gomez D, Dokter I, et al. Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking[J]. J Mater Chem B, 2020, 8(41): 9566-9575.
[71]
Spang MT, Christman KL. Extracellular matrix hydrogel therapies: In vivo applications and development[J]. Acta Biomater, 2018, 68: 1-14.
[72]
Yazdanpanah G, Shah R, Raghurama R, et al. In-situ porcine corneal matrix hydrogel as ocular surface bandage[J]. Ocul Surf, 2021, 21: 27-36.
[73]
Zhou Q, Guaiquil VH, Wong M, et al. Hydrogels derived from acellular porcine corneal stroma enhance corneal wound healing[J]. Acta Biomater, 2021, 134: 177-189.
[74]
Ahearne M, Lynch AP. Early Observation of Extracellular Matrix-Derived Hydrogels for Corneal Stroma Regeneration[J]. Tissue Eng Part C Method, 2015, 21(10): 1059-1069.
[75]
Wang F, Shi W, Li H, et al. Decellularized porcine cornea-derived hydrogels for the regeneration of epithelium and stroma in focal corneal defects[J]. Ocul Surf, 2020, 18(4): 748-760.
[76]
Fernánde PJ, Madden PW, Ahearne M. Engineering a Corneal Stromal Equivalent Using a Novel Multilayered Fabrication Assembly Technique[J]. Tissue Eng Part A, 2020, 26(19-20): 1030-1041.
[77]
Kong X, Chen L, Li B, et al. Applications of oxidized alginate in regenerative medicine[J]. J Mater Chem B, 2021, 9(12): 2785-2801.
[78]
Reakasame S, Boccaccini AR. Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review[J]. Biomacromolecules, 2018, 19(1): 3-21.
[79]
Wright B, De Bank PA, Luetchford KA, et al. Oxidized alginate hydrogels as niche environments for corneal epithelial cells[J]. J Biomed Mater Res A, 2014, 102(10): 3393-3400.
[80]
Tonsomboon K, Oyen ML. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea[J]. J Mech Behav Biomed Mater, 2013, 21: 185-194.
[81]
Ozcelik B, Brown KD, Blencowe A, et al. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium[J]. Adv Healthc Mater, 2014, 3(9): 1496-1507.
[82]
Bidaguren A, Mendicute J, Madarieta I, et al. Confocal and Histological Features After Poly(Ethylene Glycol) Diacrylate Corneal Inlay Implantation[J]. Transl Vis Sci Technol, 2019, 8(6): 39.
[83]
Zheng LL, Vanchinathan V, Dalal R, et al. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea[J]. J Biomed Mater Res A, 2015, 103(10): 3157-3165.
[84]
Huang J, Wang W, Yu J, et al. Combination of dexamethasone and Avastin? by supramolecular hydrogel attenuates the inflammatory corneal neovascularization in rat alkali burn model[J]. Colloids Surf B Biointerfaces, 2017, 159: 241-250.
[85]
Liu W, Lee BS, Mieler WF, et al. Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Bioactive Aflibercept In Vitro[J]. Curr Eye Res, 2019, 44(3): 264-274.
[86]
Luo Z, Jin L, Xu L, et al. Thermosensitive PEG-PCL-PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium[J]. Drug Deliv, 2016, 23(1): 63-68.
[87]
Liu D, Wu Q, Zhu Y, et al. Co-delivery of metformin and levofloxacin hydrochloride using biodegradable thermosensitive hydrogel for the treatment of corneal neovascularization[J]. Drug Deliv, 2019, 26(1): 522-531.
[88]
Cuming RS, Abarca EM, Duran S, et al. Development of a Sustained-Release Voriconazole-Containing Thermogel for Subconjunctival Injection in Horses[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2746-2754.
[89]
Gao Y, Sun Y, Ren F, et al. PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate[J]. Drug Dev Ind Pharm, 2010, 36(10): 1131-1138.
[90]
Oelker AM, Grinstaff MW. Synthesis, characterization, and in vitro evaluation of a hydrogel-based corneal onlay[J]. IEEE Trans Nanobioscience, 2012, 11(1): 37-45.
[91]
Sinha M, Gupte T. Design and evaluation of artificial cornea with core-skirt design using polyhydroxyethyl methacrylate and graphite[J]. Int Ophthalmol, 2018, 38(3): 1225-1233.
[92]
Wang J, Chen Y, Bai Y, et al. A core-skirt designed artificial cornea with orthogonal microfiber grid scaffold[J]. Exp Eye Res, 2020, 195: 108037.
[93]
Cao D, Zhang Y, Cui Z, et al. New strategy for design and fabrication of polymer hydrogel with tunable porosity as artificial corneal skirt[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(1): 665-672.
[94]
Han Y, Li C, Cai Q, et al. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma[J]. Biomed Mater, 2020, 15(3): 035022.
[95]
Jiang H, Zuo Y, Zhang L, et al. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea[J]. J Mater Sci Mater Med, 2014, 25(3): 941-952.
[96]
Kharaghani D, Dutta D, Ho KK, et al. Active loading graphite/hydroxyapatite into the stable hydroxyethyl cellulose scaffold nanofibers for artificial cornea application[J]. Cellulose, 2020, 27: 3319.
[97]
Torres LC, Fan X, Domszy R, et al. Hydrogel-based ocular drug delivery systems for hydrophobic drugs[J]. Eur J Pharm Sci, 2020, 154: 105503.
[98]
Xu J, Li X, Sun F, et al. PVA hydrogels containing beta-cyclodextrin for enhanced loading and sustained release of ocular therapeutics[J]. J Biomater Sci Polym Ed, 2010, 21(8-9): 1023-1038.
[99]
Sun X, Yu Z, Cai Z, et al. Voriconazole Composited Polyvinyl Alcohol/Hydroxypropyl-β-Cyclodextrin Nanofibers for Ophthalmic Delivery[J]. PLoS One, 2016, 11(12): e0167961.
[100]
Fiorica C, Palumbo FS, Pitarresi G, et al. Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone[J]. Carbohydr Polym, 2017, 166: 281-290.
[101]
Zhong J, Deng Y, Tian B, et al. Hyaluronate Acid-Dependent Protection and Enhanced Corneal Wound Healing against Oxidative Damage in Corneal Epithelial Cells[J]. J Ophthalmol, 2016: 6538051.
[102]
Fiorica C, Senior RA, Pitarresi G, et al. Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells[J]. Int J Pharm, 2011, 414(1-2): 104-111.
[1]
Barroso IA, Man K, Hall TJ, et al. Photocurable antimicrobial silk-based hydrogels for corneal repair[J]. J Biomed Mater Res A, 2022, 110(7): 1401-1415.
[2]
Chen F, Le P, Fernandes-Cunha GM, et al. Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair[J]. Biomaterials, 2020, 255: 120176.
[3]
Ghezzi CE, Rnjak-Kovacina J, Kaplan DL. Corneal tissue engineering: recent advances and future perspectives[J]. Tissue Eng Part B Rev, 2015, 21(3): 278-287.
[4]
Bhattacharjee P, Ahearne M. Significance of crosslinking approaches in the development of next generation hydrogels for corneal tissue engineering[J]. Pharmaceutics, 2021, 13(3): 319.
[5]
Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery[J]. Chem Rev, 2012, 112(5): 2853-2888.
[6]
Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications[J]. Int J Pharm, 2008, 355(1-2): 1-18.
[7]
Mirazul IM, Cèpla V, He C, et al. Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications[J]. Acta Biomater, 2015, 12: 70-80.
[8]
Duarte Campos DF, Rohde M, Ross M, et al. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes[J]. J Biomed Mater Res A, 2019, 107(9): 1945-1953.
[9]
Duan X, Sheardown H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions[J]. Biomaterials, 2006, 27(26): 4608-4617.
[10]
Bentley E, Murphy CJ, Li F, et al. Biosynthetic corneal substitute implantation in dogs[J]. Cornea, 2010, 29(8): 910-916.
[11]
Ahn JI, Kuffova L, Merrett K, et al. Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers[J]. Acta Biomater, 2013, 9(8): 7796-7805.
[12]
Zhao X, Liu Y, Li W, et al. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid[J]. Mater Sci Eng C Mater Biol Appl, 2015, 55: 201-208.
[13]
Koh LB, Islam MM, Mitra D, et al. Epoxy cross-linked collagen and collagen-laminin Peptide hydrogels as corneal substitutes[J]. J Funct Biomater, 2013, 4(3): 162-177.
[14]
Myung D, Farooqui N, Zheng LL, et al. Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing[J]. J Biomed Mater Res A, 2009, 90(1): 70-81.
[15]
Rafat M, Li F, Fagerholm P, et al. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering[J]. Biomaterials, 2008, 29(29): 3960-3972.
[16]
Ahearne M, Coyle A. Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels[J]. J Mech Behav Biomed Mater, 2016, 54: 259-267.
[17]
Goodarzi H, Jadidi K, Pourmotabed S, et al. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications[J]. Int J Biol Macromol, 2019, 126: 620-632.
[18]
Hong H, Kim H, Han SJ, et al. Compressed collagen intermixed with cornea-derived decellularized extracellular matrix providing mechanical and biochemical niches for corneal stroma analogue[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109837.
[19]
Chen F, Le P, Fernandes-Cunha GM, et al. Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair[J]. Biomaterials, 2020, 255: 120176.
[20]
Fernandes-Cunha GM, Chen KM, Chen F, et al. In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects[J]. Sci Rep, 2020, 10(1): 16671.
[21]
Wang X, Majumdar S, Soiberman U, et al. Multifunctional synthetic Bowman's membrane-stromal biomimetic for corneal reconstruction[J]. Biomaterials, 2020, 241: 119880.
[22]
Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent[J]. Exp Eye Res, 2018, 173: 188-193.
[23]
Duarte CDF, Rohde M, Ross M, et al. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes[J]. J Biomed Mater Res A, 2019, 107(9): 1945-1953.
[24]
Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks[J]. Biomaterials, 2018, 171: 57-71.
[25]
Rafat M, Xeroudaki M, Koulikovska M, et al. Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications[J]. Biomaterials, 2016, 83: 142-155.
[26]
Lee YP, Liu HY, Lin PC, et al. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery[J]. Colloids Surf B Biointerfaces, 2019, 175: 26-35.
[27]
Liu P, Shen H, Zhi Y, et al. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels[J]. Colloids Surf B Biointerfaces, 2019, 181: 1026-1034.
[28]
Seow WY, Kandasamy K, Peh GSL, et al. Ultrathin, Strong, and Cell-Adhesive Agarose-Based Membranes Engineered as Substrates for Corneal Endothelial Cells[J]. ACS Biomater Sci Eng, 2019, 5(8): 4067-4076.
[29]
Yang CF, Yasukawa T, Kimura H, et al. Experimental corneal neovascularization by basic fibroblast growth factor incorporated into gelatin hydrogel[J]. Ophthalmic Res, 2000, 32(1): 19-24.
[30]
Lai JY. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use[J]. J Mater Sci Mater Med, 2010, 21(6): 1899-1911.
[31]
Luo LJ, Lai JY, Chou SF, et al. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering[J]. Acta Biomater, 2018, 65: 123-136.
[32]
Rizwan M, Peh GSL, Ang HP, et al. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications[J]. Biomaterials, 2017, 120: 139-154.
[33]
Kilic Bektas C, Hasirci V. Cell Loaded GelMA: HEMA IPN hydrogels for corneal stroma engineering[J]. J Mater Sci Mater Med, 2019, 31(1): 2.
[34]
Uyanklar M, Günal G, Tevlek A, et al. Hybrid Cornea: Cell Laden Hydrogel Incorporated Decellularized Matrix[J]. ACS Biomater Sci Eng, 2020, 6(1): 122-133.
[35]
Li L, Lu C, Wang L, et al. Gelatin-Based Photocurable Hydrogels for Corneal Wound Repair[J]. ACS Appl Mater Interfaces, 201810(16): 13283-13292.
[36]
Zhao X, Li S, Du X, et al. Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty[J]. Bioact Mater, 2021, 8: 196-209.
[37]
Kilic Bektas C, Hasirci V. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering[J]. Biomater Sci, 2019, 8(1): 438-449.
[38]
Mahdavi SS, Abdekhodaie MJ, Kumar H, et al. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent[J]. Ann Biomed Eng, 2020, 48(7): 1955-1970.
[39]
Du LQ, Wu XY, Li MC, et al. Effect of different biomedical membranes on alkali-burned cornea[J]. Ophthalmic Res, 2008, 40(6): 282-290.
[40]
Ozcelik B, Brown KD, Blencowe A, et al. Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering[J]. Acta Biomater, 2013, 9(5): 6594-6605.
[41]
Tang Q, Luo C, Lu B, et al. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration[J]. Acta Biomater, 2017, 61: 101-113.
[42]
Wang TJ, Wang IJ, Hu FR, et al. Applications of Biomaterials in Corneal Endothelial Tissue Engineering[J]. Cornea, 2016, 35(Suppl 1): S25-S30..
[43]
Tsai CY, Woung LC, Yen JC, et al. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing[J]. Carbohydr Polym, 2016, 135: 308-315.
[44]
Jiang G, Sun J, Ding F. PEG-g-chitosan thermosensitive hydrogel for implant drug delivery: cytotoxicity, in vivo degradation and drug release[J]. J Biomater Sci Polym Ed, 2014, 25(3): 241-256.
[45]
Yang LQ, Lan YQ, Guo H, et al. Ophthalmic drug-loaded N,O-carboxymethyl chitosan hydrogels: synthesis, in vitro and in vivo evaluation[J]. Acta Pharmacol Sin, 2010, 31(12): 1625-1634.
[46]
Mohammed S, Chouhan G, Anuforom O, et al. Thermosensitive hydrogel as an in situ gelling antimicrobial ocular dressing[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 203-209.
[47]
Shi H, Wang Y, Bao Z, et al. Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability[J]. Int J Pharm, 2019, 570: 118688.
[48]
Yu Y, Feng R, Li J, et al. A hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier ocular drug delivery platform[J]. Asian J Pharm Sci, 2019, 14(4): 423-434.
[49]
Yu Y, Xu S, Yu S, et al. A Hybrid Genipin-Cross-Linked Hydrogel/Nanostructured Lipid Carrier for Ocular Drug Delivery: Cellular, ex Vivo, and in Vivo Evaluation[J]. ACS Biomater Sci Eng, 2020, 6(3): 1543-1552.
[50]
Tang Q, Luo C, Lu B, et al. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration[J]. Acta Biomater, 2017, 61: 101-113.
[51]
Yu S, Zhang X, Tan G, et al. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery[J]. Carbohydr Polym, 2017, 155: 208-217.
[52]
Chien Y, Liao YW, Liu DM, et al. Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel[J]. Biomaterials, 2012, 33(32): 8003-8016.
[53]
Xu W, Liu K, Li T, et al. An in situ hydrogel based on carboxymethyl chitosan and sodium alginate dialdehyde for corneal wound healing after alkali burn[J]. J Biomed Mater Res A, 2019, 107(4): 742-754.
[54]
Williams DL, Wirostko BM, Gum G, et al. Topical Cross-Linked HA-Based Hydrogel Accelerates Closure of Corneal Epithelial Defects and Repair of Stromal Ulceration in Companion Animals[J]. Invest Ophthalmol Vis Sci, 2017, 58(11): 4616-4622.
[55]
Chen D, Qu Y, Hua X, et al. A hyaluronan hydrogel scaffold-based xeno-free culture system for ex vivo expansion of human corneal epithelial stem cells[J]. Eye (Lond), 2017, 31(6): 962-971.
[56]
Lai JY. Hyaluronic acid concentration-mediated changes in structure and function of porous carriers for corneal endothelial cell sheet delivery[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 411-419.
[57]
Koivusalo L, Karvinen J, Sorsa E, et al. Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects[J]. Mater Sci Eng C Mater Biol Appl, 2018, 85: 68-78.
[58]
Koivusalo L, Kauppila M, Samanta S, et al. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma[J]. Biomaterials, 2019, 225: 119516.
[59]
Fiorica C, Palumbo FS, Pitarresi G, et al. Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone[J]. Carbohvdr Polym, 2017, 166: 281-290.
[60]
Luaces-RA, Díaz-Tomé V, González-Barcia M, et al. Cysteamine polysaccharide hydrogels: Study of extended ocular delivery and biopermanence time by PET imaging[J]. Int J Pharm, 2017, 528(1-2): 714-722.
[61]
Zhu M, Wang J, Li N. A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery[J]. Artif Cells Nanomed Biotechnol, 2018, 46(6): 1282-1287.
[62]
Liu Y, Wang Y, Yang J, et al. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production[J]. Int J Pharm, 2019, 565: 133-142.
[63]
Soleimanifar F, Mortazavi Y, Nadri S, et al. Conjunctiva derived mesenchymal stem cell (CJMSCs) as a potential platform for differentiation into corneal epithelial cells on bioengineered electrospun scaffolds[J]. J Biomed Mater Res A, 2017, 105(10): 2703-2711.
[64]
Orash Mahmoud Salehi A, Nourbakhsh MS, Rafienia M, et al. Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold[J]. Int J Biol Macromol, 2020, 161: 377-388.
[65]
Farasatkia A, Kharaziha M, Ashrafizadeh F, et al. Transparent silk/gelatin methacrylate (GelMA) fibrillar film for corneal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111744.
[66]
Mitropoulos AN, Marelli B, Ghezzi CE, et al. Transparent, Nanostructured Silk Fibroin Hydrogels with Tunable Mechanical Properties[J]. ACS Biomater Sci Eng, 2015, 1(10): 964-970.
[67]
Zhou H, Wang Z, Cao H, et al. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering[J]. J Biomater Sci Polym Ed, 2019, 30(17): 1604-1619.
[68]
Farokhi M, Aleemardani M, Solouk A, et al. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials[J]. Biomed Mater, 2021, 16(2): 022004.
[1] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[4] 朱晓红, 周诗梦, 朱晓霞, 邹美银. 壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 125-132.
[5] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[6] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[7] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[8] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[9] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[10] 江卓婷, 高妍, 李春晖. 相干光断层扫描在角膜屈光手术术前筛查中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 247-251.
[11] 陈灏楠, 肖伟. 透明角膜切口对白内障术后角膜散光的影响及其精准测量的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 172-176.
[12] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[13] 曹宇, 苗泽群, 王凯, 王乐今. 关注交联技术的发展及巩膜交联技术在控制近视发展中的潜在应用价值[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 65-69.
[14] 陈乐然, 袁翌斐, 陈跃国. 儿童圆锥角膜发病机制与角膜胶原交联术适应证及治疗研究的新进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 50-54.
[15] 葛校永, 李亚华, 李宗明, 周子鹤, 吴昆鹏, 李一帆, 韩新巍, 任克伟. 新型温敏性水凝胶在经导管动脉化疗栓塞中的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(03): 268-274.
阅读次数
全文


摘要