[69] |
Cui X, Soliman BG, Alcala-Orozco CR, et al. Rapid Photocrosslinking of Silk Hydrogels with High Cell Density and Enhanced Shape Fidelity[J]. Adv Healthc Mater, 2020, 9(4): e1901667.
|
[70] |
Piluso S, Flores Gomez D, Dokter I, et al. Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking[J]. J Mater Chem B, 2020, 8(41): 9566-9575.
|
[71] |
Spang MT, Christman KL. Extracellular matrix hydrogel therapies: In vivo applications and development[J]. Acta Biomater, 2018, 68: 1-14.
|
[72] |
Yazdanpanah G, Shah R, Raghurama R, et al. In-situ porcine corneal matrix hydrogel as ocular surface bandage[J]. Ocul Surf, 2021, 21: 27-36.
|
[73] |
Zhou Q, Guaiquil VH, Wong M, et al. Hydrogels derived from acellular porcine corneal stroma enhance corneal wound healing[J]. Acta Biomater, 2021, 134: 177-189.
|
[74] |
Ahearne M, Lynch AP. Early Observation of Extracellular Matrix-Derived Hydrogels for Corneal Stroma Regeneration[J]. Tissue Eng Part C Method, 2015, 21(10): 1059-1069.
|
[75] |
Wang F, Shi W, Li H, et al. Decellularized porcine cornea-derived hydrogels for the regeneration of epithelium and stroma in focal corneal defects[J]. Ocul Surf, 2020, 18(4): 748-760.
|
[76] |
Fernánde PJ, Madden PW, Ahearne M. Engineering a Corneal Stromal Equivalent Using a Novel Multilayered Fabrication Assembly Technique[J]. Tissue Eng Part A, 2020, 26(19-20): 1030-1041.
|
[77] |
Kong X, Chen L, Li B, et al. Applications of oxidized alginate in regenerative medicine[J]. J Mater Chem B, 2021, 9(12): 2785-2801.
|
[78] |
Reakasame S, Boccaccini AR. Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review[J]. Biomacromolecules, 2018, 19(1): 3-21.
|
[79] |
Wright B, De Bank PA, Luetchford KA, et al. Oxidized alginate hydrogels as niche environments for corneal epithelial cells[J]. J Biomed Mater Res A, 2014, 102(10): 3393-3400.
|
[80] |
Tonsomboon K, Oyen ML. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea[J]. J Mech Behav Biomed Mater, 2013, 21: 185-194.
|
[81] |
Ozcelik B, Brown KD, Blencowe A, et al. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium[J]. Adv Healthc Mater, 2014, 3(9): 1496-1507.
|
[82] |
Bidaguren A, Mendicute J, Madarieta I, et al. Confocal and Histological Features After Poly(Ethylene Glycol) Diacrylate Corneal Inlay Implantation[J]. Transl Vis Sci Technol, 2019, 8(6): 39.
|
[83] |
Zheng LL, Vanchinathan V, Dalal R, et al. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea[J]. J Biomed Mater Res A, 2015, 103(10): 3157-3165.
|
[84] |
Huang J, Wang W, Yu J, et al. Combination of dexamethasone and Avastin? by supramolecular hydrogel attenuates the inflammatory corneal neovascularization in rat alkali burn model[J]. Colloids Surf B Biointerfaces, 2017, 159: 241-250.
|
[85] |
Liu W, Lee BS, Mieler WF, et al. Biodegradable Microsphere-Hydrogel Ocular Drug Delivery System for Controlled and Extended Release of Bioactive Aflibercept In Vitro[J]. Curr Eye Res, 2019, 44(3): 264-274.
|
[86] |
Luo Z, Jin L, Xu L, et al. Thermosensitive PEG-PCL-PEG (PECE) hydrogel as an in situ gelling system for ocular drug delivery of diclofenac sodium[J]. Drug Deliv, 2016, 23(1): 63-68.
|
[87] |
Liu D, Wu Q, Zhu Y, et al. Co-delivery of metformin and levofloxacin hydrochloride using biodegradable thermosensitive hydrogel for the treatment of corneal neovascularization[J]. Drug Deliv, 2019, 26(1): 522-531.
|
[88] |
Cuming RS, Abarca EM, Duran S, et al. Development of a Sustained-Release Voriconazole-Containing Thermogel for Subconjunctival Injection in Horses[J]. Invest Ophthalmol Vis Sci, 2017, 58(5): 2746-2754.
|
[89] |
Gao Y, Sun Y, Ren F, et al. PLGA-PEG-PLGA hydrogel for ocular drug delivery of dexamethasone acetate[J]. Drug Dev Ind Pharm, 2010, 36(10): 1131-1138.
|
[90] |
Oelker AM, Grinstaff MW. Synthesis, characterization, and in vitro evaluation of a hydrogel-based corneal onlay[J]. IEEE Trans Nanobioscience, 2012, 11(1): 37-45.
|
[91] |
Sinha M, Gupte T. Design and evaluation of artificial cornea with core-skirt design using polyhydroxyethyl methacrylate and graphite[J]. Int Ophthalmol, 2018, 38(3): 1225-1233.
|
[92] |
Wang J, Chen Y, Bai Y, et al. A core-skirt designed artificial cornea with orthogonal microfiber grid scaffold[J]. Exp Eye Res, 2020, 195: 108037.
|
[93] |
Cao D, Zhang Y, Cui Z, et al. New strategy for design and fabrication of polymer hydrogel with tunable porosity as artificial corneal skirt[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(1): 665-672.
|
[94] |
Han Y, Li C, Cai Q, et al. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma[J]. Biomed Mater, 2020, 15(3): 035022.
|
[95] |
Jiang H, Zuo Y, Zhang L, et al. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea[J]. J Mater Sci Mater Med, 2014, 25(3): 941-952.
|
[96] |
Kharaghani D, Dutta D, Ho KK, et al. Active loading graphite/hydroxyapatite into the stable hydroxyethyl cellulose scaffold nanofibers for artificial cornea application[J]. Cellulose, 2020, 27: 3319.
|
[97] |
Torres LC, Fan X, Domszy R, et al. Hydrogel-based ocular drug delivery systems for hydrophobic drugs[J]. Eur J Pharm Sci, 2020, 154: 105503.
|
[98] |
Xu J, Li X, Sun F, et al. PVA hydrogels containing beta-cyclodextrin for enhanced loading and sustained release of ocular therapeutics[J]. J Biomater Sci Polym Ed, 2010, 21(8-9): 1023-1038.
|
[99] |
Sun X, Yu Z, Cai Z, et al. Voriconazole Composited Polyvinyl Alcohol/Hydroxypropyl-β-Cyclodextrin Nanofibers for Ophthalmic Delivery[J]. PLoS One, 2016, 11(12): e0167961.
|
[100] |
Fiorica C, Palumbo FS, Pitarresi G, et al. Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone[J]. Carbohydr Polym, 2017, 166: 281-290.
|
[101] |
Zhong J, Deng Y, Tian B, et al. Hyaluronate Acid-Dependent Protection and Enhanced Corneal Wound Healing against Oxidative Damage in Corneal Epithelial Cells[J]. J Ophthalmol, 2016: 6538051.
|
[102] |
Fiorica C, Senior RA, Pitarresi G, et al. Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells[J]. Int J Pharm, 2011, 414(1-2): 104-111.
|
[1] |
Barroso IA, Man K, Hall TJ, et al. Photocurable antimicrobial silk-based hydrogels for corneal repair[J]. J Biomed Mater Res A, 2022, 110(7): 1401-1415.
|
[2] |
Chen F, Le P, Fernandes-Cunha GM, et al. Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair[J]. Biomaterials, 2020, 255: 120176.
|
[3] |
Ghezzi CE, Rnjak-Kovacina J, Kaplan DL. Corneal tissue engineering: recent advances and future perspectives[J]. Tissue Eng Part B Rev, 2015, 21(3): 278-287.
|
[4] |
Bhattacharjee P, Ahearne M. Significance of crosslinking approaches in the development of next generation hydrogels for corneal tissue engineering[J]. Pharmaceutics, 2021, 13(3): 319.
|
[5] |
Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery[J]. Chem Rev, 2012, 112(5): 2853-2888.
|
[6] |
Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications[J]. Int J Pharm, 2008, 355(1-2): 1-18.
|
[7] |
Mirazul IM, Cèpla V, He C, et al. Functional fabrication of recombinant human collagen-phosphorylcholine hydrogels for regenerative medicine applications[J]. Acta Biomater, 2015, 12: 70-80.
|
[8] |
Duarte Campos DF, Rohde M, Ross M, et al. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes[J]. J Biomed Mater Res A, 2019, 107(9): 1945-1953.
|
[9] |
Duan X, Sheardown H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions[J]. Biomaterials, 2006, 27(26): 4608-4617.
|
[10] |
Bentley E, Murphy CJ, Li F, et al. Biosynthetic corneal substitute implantation in dogs[J]. Cornea, 2010, 29(8): 910-916.
|
[11] |
Ahn JI, Kuffova L, Merrett K, et al. Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers[J]. Acta Biomater, 2013, 9(8): 7796-7805.
|
[12] |
Zhao X, Liu Y, Li W, et al. Collagen based film with well epithelial and stromal regeneration as corneal repair materials: Improving mechanical property by crosslinking with citric acid[J]. Mater Sci Eng C Mater Biol Appl, 2015, 55: 201-208.
|
[13] |
Koh LB, Islam MM, Mitra D, et al. Epoxy cross-linked collagen and collagen-laminin Peptide hydrogels as corneal substitutes[J]. J Funct Biomater, 2013, 4(3): 162-177.
|
[14] |
Myung D, Farooqui N, Zheng LL, et al. Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing[J]. J Biomed Mater Res A, 2009, 90(1): 70-81.
|
[15] |
Rafat M, Li F, Fagerholm P, et al. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering[J]. Biomaterials, 2008, 29(29): 3960-3972.
|
[16] |
Ahearne M, Coyle A. Application of UVA-riboflavin crosslinking to enhance the mechanical properties of extracellular matrix derived hydrogels[J]. J Mech Behav Biomed Mater, 2016, 54: 259-267.
|
[17] |
Goodarzi H, Jadidi K, Pourmotabed S, et al. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications[J]. Int J Biol Macromol, 2019, 126: 620-632.
|
[18] |
Hong H, Kim H, Han SJ, et al. Compressed collagen intermixed with cornea-derived decellularized extracellular matrix providing mechanical and biochemical niches for corneal stroma analogue[J]. Mater Sci Eng C Mater Biol Appl, 2019, 103: 109837.
|
[19] |
Chen F, Le P, Fernandes-Cunha GM, et al. Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair[J]. Biomaterials, 2020, 255: 120176.
|
[20] |
Fernandes-Cunha GM, Chen KM, Chen F, et al. In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects[J]. Sci Rep, 2020, 10(1): 16671.
|
[21] |
Wang X, Majumdar S, Soiberman U, et al. Multifunctional synthetic Bowman's membrane-stromal biomimetic for corneal reconstruction[J]. Biomaterials, 2020, 241: 119880.
|
[22] |
Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent[J]. Exp Eye Res, 2018, 173: 188-193.
|
[23] |
Duarte CDF, Rohde M, Ross M, et al. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes[J]. J Biomed Mater Res A, 2019, 107(9): 1945-1953.
|
[24] |
Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks[J]. Biomaterials, 2018, 171: 57-71.
|
[25] |
Rafat M, Xeroudaki M, Koulikovska M, et al. Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications[J]. Biomaterials, 2016, 83: 142-155.
|
[26] |
Lee YP, Liu HY, Lin PC, et al. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery[J]. Colloids Surf B Biointerfaces, 2019, 175: 26-35.
|
[27] |
Liu P, Shen H, Zhi Y, et al. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels[J]. Colloids Surf B Biointerfaces, 2019, 181: 1026-1034.
|
[28] |
Seow WY, Kandasamy K, Peh GSL, et al. Ultrathin, Strong, and Cell-Adhesive Agarose-Based Membranes Engineered as Substrates for Corneal Endothelial Cells[J]. ACS Biomater Sci Eng, 2019, 5(8): 4067-4076.
|
[29] |
Yang CF, Yasukawa T, Kimura H, et al. Experimental corneal neovascularization by basic fibroblast growth factor incorporated into gelatin hydrogel[J]. Ophthalmic Res, 2000, 32(1): 19-24.
|
[30] |
Lai JY. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use[J]. J Mater Sci Mater Med, 2010, 21(6): 1899-1911.
|
[31] |
Luo LJ, Lai JY, Chou SF, et al. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering[J]. Acta Biomater, 2018, 65: 123-136.
|
[32] |
Rizwan M, Peh GSL, Ang HP, et al. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications[J]. Biomaterials, 2017, 120: 139-154.
|
[33] |
Kilic Bektas C, Hasirci V. Cell Loaded GelMA: HEMA IPN hydrogels for corneal stroma engineering[J]. J Mater Sci Mater Med, 2019, 31(1): 2.
|
[34] |
Uyanklar M, Günal G, Tevlek A, et al. Hybrid Cornea: Cell Laden Hydrogel Incorporated Decellularized Matrix[J]. ACS Biomater Sci Eng, 2020, 6(1): 122-133.
|
[35] |
Li L, Lu C, Wang L, et al. Gelatin-Based Photocurable Hydrogels for Corneal Wound Repair[J]. ACS Appl Mater Interfaces, 2018,10(16): 13283-13292.
|
[36] |
Zhao X, Li S, Du X, et al. Natural polymer-derived photocurable bioadhesive hydrogels for sutureless keratoplasty[J]. Bioact Mater, 2021, 8: 196-209.
|
[37] |
Kilic Bektas C, Hasirci V. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering[J]. Biomater Sci, 2019, 8(1): 438-449.
|
[38] |
Mahdavi SS, Abdekhodaie MJ, Kumar H, et al. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent[J]. Ann Biomed Eng, 2020, 48(7): 1955-1970.
|
[39] |
Du LQ, Wu XY, Li MC, et al. Effect of different biomedical membranes on alkali-burned cornea[J]. Ophthalmic Res, 2008, 40(6): 282-290.
|
[40] |
Ozcelik B, Brown KD, Blencowe A, et al. Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering[J]. Acta Biomater, 2013, 9(5): 6594-6605.
|
[41] |
Tang Q, Luo C, Lu B, et al. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration[J]. Acta Biomater, 2017, 61: 101-113.
|
[42] |
Wang TJ, Wang IJ, Hu FR, et al. Applications of Biomaterials in Corneal Endothelial Tissue Engineering[J]. Cornea, 2016, 35(Suppl 1): S25-S30..
|
[43] |
Tsai CY, Woung LC, Yen JC, et al. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing[J]. Carbohydr Polym, 2016, 135: 308-315.
|
[44] |
Jiang G, Sun J, Ding F. PEG-g-chitosan thermosensitive hydrogel for implant drug delivery: cytotoxicity, in vivo degradation and drug release[J]. J Biomater Sci Polym Ed, 2014, 25(3): 241-256.
|
[45] |
Yang LQ, Lan YQ, Guo H, et al. Ophthalmic drug-loaded N,O-carboxymethyl chitosan hydrogels: synthesis, in vitro and in vivo evaluation[J]. Acta Pharmacol Sin, 2010, 31(12): 1625-1634.
|
[46] |
Mohammed S, Chouhan G, Anuforom O, et al. Thermosensitive hydrogel as an in situ gelling antimicrobial ocular dressing[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 203-209.
|
[47] |
Shi H, Wang Y, Bao Z, et al. Thermosensitive glycol chitosan-based hydrogel as a topical ocular drug delivery system for enhanced ocular bioavailability[J]. Int J Pharm, 2019, 570: 118688.
|
[48] |
Yu Y, Feng R, Li J, et al. A hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier ocular drug delivery platform[J]. Asian J Pharm Sci, 2019, 14(4): 423-434.
|
[49] |
Yu Y, Xu S, Yu S, et al. A Hybrid Genipin-Cross-Linked Hydrogel/Nanostructured Lipid Carrier for Ocular Drug Delivery: Cellular, ex Vivo, and in Vivo Evaluation[J]. ACS Biomater Sci Eng, 2020, 6(3): 1543-1552.
|
[50] |
Tang Q, Luo C, Lu B, et al. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration[J]. Acta Biomater, 2017, 61: 101-113.
|
[51] |
Yu S, Zhang X, Tan G, et al. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery[J]. Carbohydr Polym, 2017, 155: 208-217.
|
[52] |
Chien Y, Liao YW, Liu DM, et al. Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel[J]. Biomaterials, 2012, 33(32): 8003-8016.
|
[53] |
Xu W, Liu K, Li T, et al. An in situ hydrogel based on carboxymethyl chitosan and sodium alginate dialdehyde for corneal wound healing after alkali burn[J]. J Biomed Mater Res A, 2019, 107(4): 742-754.
|
[54] |
Williams DL, Wirostko BM, Gum G, et al. Topical Cross-Linked HA-Based Hydrogel Accelerates Closure of Corneal Epithelial Defects and Repair of Stromal Ulceration in Companion Animals[J]. Invest Ophthalmol Vis Sci, 2017, 58(11): 4616-4622.
|
[55] |
Chen D, Qu Y, Hua X, et al. A hyaluronan hydrogel scaffold-based xeno-free culture system for ex vivo expansion of human corneal epithelial stem cells[J]. Eye (Lond), 2017, 31(6): 962-971.
|
[56] |
Lai JY. Hyaluronic acid concentration-mediated changes in structure and function of porous carriers for corneal endothelial cell sheet delivery[J]. Mater Sci Eng C Mater Biol Appl, 2016, 59: 411-419.
|
[57] |
Koivusalo L, Karvinen J, Sorsa E, et al. Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects[J]. Mater Sci Eng C Mater Biol Appl, 2018, 85: 68-78.
|
[58] |
Koivusalo L, Kauppila M, Samanta S, et al. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma[J]. Biomaterials, 2019, 225: 119516.
|
[59] |
Fiorica C, Palumbo FS, Pitarresi G, et al. Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone[J]. Carbohvdr Polym, 2017, 166: 281-290.
|
[60] |
Luaces-RA, Díaz-Tomé V, González-Barcia M, et al. Cysteamine polysaccharide hydrogels: Study of extended ocular delivery and biopermanence time by PET imaging[J]. Int J Pharm, 2017, 528(1-2): 714-722.
|
[61] |
Zhu M, Wang J, Li N. A novel thermo-sensitive hydrogel-based on poly(N-isopropylacrylamide)/hyaluronic acid of ketoconazole for ophthalmic delivery[J]. Artif Cells Nanomed Biotechnol, 2018, 46(6): 1282-1287.
|
[62] |
Liu Y, Wang Y, Yang J, et al. Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production[J]. Int J Pharm, 2019, 565: 133-142.
|
[63] |
Soleimanifar F, Mortazavi Y, Nadri S, et al. Conjunctiva derived mesenchymal stem cell (CJMSCs) as a potential platform for differentiation into corneal epithelial cells on bioengineered electrospun scaffolds[J]. J Biomed Mater Res A, 2017, 105(10): 2703-2711.
|
[64] |
Orash Mahmoud Salehi A, Nourbakhsh MS, Rafienia M, et al. Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold[J]. Int J Biol Macromol, 2020, 161: 377-388.
|
[65] |
Farasatkia A, Kharaziha M, Ashrafizadeh F, et al. Transparent silk/gelatin methacrylate (GelMA) fibrillar film for corneal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111744.
|
[66] |
Mitropoulos AN, Marelli B, Ghezzi CE, et al. Transparent, Nanostructured Silk Fibroin Hydrogels with Tunable Mechanical Properties[J]. ACS Biomater Sci Eng, 2015, 1(10): 964-970.
|
[67] |
Zhou H, Wang Z, Cao H, et al. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering[J]. J Biomater Sci Polym Ed, 2019, 30(17): 1604-1619.
|
[68] |
Farokhi M, Aleemardani M, Solouk A, et al. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials[J]. Biomed Mater, 2021, 16(2): 022004.
|