切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2021, Vol. 11 ›› Issue (04) : 234 -241. doi: 10.3877/cma.j.issn.2095-2007.2021.04.008

综述

特发性黄斑裂孔发病机制、诊断及治疗的研究进展
陈昱凝1, 沈畅1, 李洋1, 魏文斌1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 眼内肿瘤诊治研究北京市重点实验室 北京市眼科学与视觉科学重点实验室 医学人工智能研究与验证工信部重点实验室
  • 收稿日期:2021-06-20 出版日期:2021-08-28
  • 通信作者: 魏文斌
  • 基金资助:
    首都卫生发展科研专项(首发2020-1-2052); 北京市科委科技计划项目(Z201100005520045,Z181100001818003); 北京市医院管理局"登峰"人才培养计划(DFL20150201); 国家自然科学基金项目(82101180); 北京市自然科学基金资助项目(7204245); 北京市教育委员会科技发展计划一般项目(KM202010025018); 北京市医院管理中心"青苗"计划专项经费资助(QMS20190203); 北京市东城区优秀人才培养计划(2018)

Progress in diagnosis and treatment of idiopathic macular hole

Yuning Chen1, Chang Shen1, Yang Li1, Wenbin Wei1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab., Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
  • Received:2021-06-20 Published:2021-08-28
  • Corresponding author: Wenbin Wei
引用本文:

陈昱凝, 沈畅, 李洋, 魏文斌. 特发性黄斑裂孔发病机制、诊断及治疗的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(04): 234-241.

Yuning Chen, Chang Shen, Yang Li, Wenbin Wei. Progress in diagnosis and treatment of idiopathic macular hole[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2021, 11(04): 234-241.

特发性黄斑裂孔(IMH)是指除明确相关原发性病变如高度近视和眼外伤等外发生的黄斑中心凹区全层神经上皮缺失,临床上主要表现为视力下降、视物变形和中心暗点。根据眼底照像和光学相干断层成像等检查结果,国际玻璃体黄斑牵拉学组建议临床上将IMH分为4期以指导治疗和评估预后。近年来,随着对其发病机制研究的深入和手术技术的提高,IMH的治疗方式也趋于多样化和精准化,本文中笔者就IMH的发病机制、临床诊断、治疗方法和预后评估的研究进展进行综述。

Idiopathic macular hole (IMH) refers to the absence of full-thickness neuroepithelium in the foveal area of the macula in addition to clearly related primary diseases such as high myopia and trauma. The main clinical manifestations of IMH include decreased vision, metamorphopsia and central dark spots. According to the examination results from fundus image and optical coherence tomography, the International Vitreomacular Traction Study recommends that IMH could be divided into four phases to guide treatment and assess prognosis in clinical. With the deepening of its pathogenesis researches and the improvement of examinations and surgical techniques, the treatment of IMH has also become more diversified and precise. The progress of the pathogenesis, clinical diagnosis, treatment and prognosis of IMH were reviewed in this paper.

图1 黄斑裂孔各临床分期光学相干断层扫描的典型图像 图A示黄斑裂孔Ⅰ期;图B示黄斑裂孔Ⅱ期;图C示黄斑裂孔Ⅲ期;图D示黄斑裂孔Ⅳ期
[1]
Darian-Smith E, Howie AR, Allen PL, et al. Tasmanian macular hole study: whole population-based incidence of full thickness macular hole[J]. Clin Experiment Ophthalmol, 2016, 44(9): 812-816.
[2]
Mc Cannel CA, Ensminger JL, Diehl NN, et al. Population-based Incidence of Macular Holes[J]. Ophthalmology, 2009, 116(7): 1366-1369.
[3]
Spaide RF. Macular hole hypotheses[J]. Am J Ophthalmol, 2005, 139(1): 149-151.
[4]
Cheng L, Freeman WR, Ozerdem U, et al. Prevalence, correlates, and natural history of epiretinal membranes surrounding idiopathic macular holes[J]. Ophthalmology, 2000, 107(5): 853-859.
[5]
Johnson MW. Posterior Vitreous Detachment: Evolution and Complications of Its Early Stages[J]. Am J Ophthalmol, 2010, 149(3): 371-382.
[6]
Gass JDM. Müller Cell Cone, an Overlooked Part of the Anatomy of the Fovea Centralis: Hypotheses Concerning Its Role in the Pathogenesis of Macular Hole and Foveomacular Retinoschisis[J]. Arch Ophthalmol, 1999, 117(6): 821-823.
[7]
Bu SC, Kuijer R, Van Der Worp RJ, et al. Glial cells and collagens in epiretinal membranes associated with idiopathic macular holes[J]. Retina, 2014, 34(5): 897-906.
[8]
Gass JDM. Idiopathic Senile Macular Hole: Its Early Stages and Pathogenesis[J]. Arch Ophthalmol, 1988, 106(5): 629-639.
[9]
Inoue M, Arakawa A, Yamane S, et al. Long-term Outcome of Macular Microstructure Assessed by Optical Coherence Tomography in Eyes With Spontaneous Resolution of Macular Hole[J]. Am J Ophthalmol, 2012, 153(4): 687-691.
[10]
Mori K, Kanno J, Gehlbach PL, et al. Montage Images of Spectral-Domain Optical Coherence Tomography in Eyes with Idiopathic Macular Holes[J]. Ophthalmology, 2012, 119(12): 2600-2608.
[11]
Wilczyński T, Heinke A, Niedzielska-Krycia A, et al. Optical coherence tomography angiography features in patients with idiopathic full-thickness macular hole, before and after surgical treatment[J]. Clin Interv Aging, 2019, 14: 505-514.
[12]
Sun Z, Gan D, Jiang C, et al. Effect of preoperative retinal sensitivity and fixation on long-term prognosis for idiopathic macular holes[J]. Graefe′s Arch Clin Exp Ophthalmol, 2012, 250(11): 1587-1596.
[13]
Syed YY, Dhillon S. Ocriplasmin: A Review of Its Use in Patients with Symptomatic Vitreomacular Adhesion[J]. Drugs, 2013, 73(14): 1617-1625.
[14]
Steel DHW, Parkes C, Papastavrou VT, et al. Predicting macular hole closure with ocriplasmin based on spectral domain optical coherence tomography[J]. Eye, 2016, 30(5): 740-745.
[15]
Juncal VR, Chow DR, Vilà N, et al. Ocriplasmin versus vitrectomy for the treatment of macular holes[J]. Can J Ophthalmol, 2018, 53(5): 441-446.
[16]
Tadayoni R, Holz FG, Zech C, et al. Assessment of anatomical and functional outcomes with ocriplasmin treatment in patients with vitreomacular traction with or without macular holes: Results of OVIID-1 Trial[J]. Retina, 2019, 39(12): 2341-2352.
[17]
Dugel PU, Tolentino M, Feiner L, et al. Results of the 2-Year Ocriplasmin for Treatment for Symptomatic Vitreomacular Adhesion Including Macular Hole (OASIS) Randomized Trial[J]. Ophthalmology, 2016, 123(10): 2232-2247.
[18]
Hikichi T, Kosaka S, Takami K, et al. 23-Gauge and 20-Gauge Vitrectomy with Air Tamponade with Combined Phacoemulsification for Idiopathic Macular Hole: A Single-Surgeon Study[J]. Am J Ophthalmol, 2011, 152(1): 114-121.
[19]
Krishnan R, Tossounis C, Yang YF. 20-gauge and 23-gauge phacovitrectomy for idiopathic macular holes: comparison of complications and long-term outcomes[J]. Eye, 2012, 27(1): 72-77.
[20]
Scholz P, Müther PS, Schiller P, et al. A Randomized Controlled Clinical Trial Comparing 20 Gauge and 23 Gauge Vitrectomy for Patients with Macular Hole or Macular Pucker[J]. Adv Ther, 2018, 35(12): 2152-2166.
[21]
Wickham L, Bunce C, Kwan AS, et al. A pilot randomised controlled trial comparing the post-operative pain experience following vitrectomy with a 20-gauge system and the 25-gauge transconjunctival system[J]. Br J Ophthalmol, 2010, 94(1): 36-40.
[22]
Dihowm F, MacCumber M. Comparison of outcomes between 20, 23 and 25 gauge vitrectomy for idiopathic macular hole[J]. Int J Retin Vitr, 2015, 1(1): 1-9.
[23]
Yoneda K, Morikawa K, Oshima Y, et al. Surgical outcomes of 27-gauge vitrectomy for a consecutive series of 163 eyes with various vitreous diseases[J]. Retina, 2017, 37(11): 2130-2137.
[24]
Cornish KS, Lois N, Scott N, et al. Vitrectomy with internal limiting membrane (ILM) peeling versus vitrectomy with no peeling for idiopathic full-thickness macular hole (FTMH) [J]. Cochrane Database Syst Rev, 2013, (6): CD009306.
[25]
Modi A, Giridhar A, Gopalakrishnan M. Comparative analysis of outcomes with variable diameter internal limiting membrane peeling in surgery for idiopathic macular hole repair[J]. Retina, 2017, 37(2): 265-273.
[26]
Modi A, Giridhar A, Gopalakrishnan M. Spectral domain optical coherence tomography-based microstructural analysis of retinal architecture post internal limiting membrane peeling for surgery of idiopathic macular hole repair[J]. Retina, 2017, 37(2): 291-298.
[27]
Imamura Y, Ishida M. Retinal thinning after internal limiting membrane peeling for idiopathic macular hole[J]. Japanese J Ophthalmol, 2018, 62(2): 158-162.
[28]
Yu Y, Liang X, Wang Z, et al. Internal limiting membrane peeling and air tamponade for stage iii and stage iv idiopathic macular hole[J]. Retina, 2020, 40(1): 66-74.
[29]
Tadayoni R, Gaudric A, Haouchine B, et al. Relationship between macular hole size and the potential benefit of internal limiting membrane peeling[J]. Br J Ophthalmol, 2006, 90(10): 1239-1241.
[30]
Yan YJ, Sun XQ, Chen Y, et al. Long-term observation of morphological changes of the inner retinal after internal limiting membrane peeling in macular hole surgery[J]. Zhonghua Yan Ke Za Zhi, 2019, 55(10): 747-756.
[31]
Michalewska Z, Michalewski J, Adelman RA, et al. Inverted Internal Limiting Membrane Flap Technique for Large Macular Holes[J]. Ophthalmology, 2010, 117(10): 2018-2025.
[32]
Rizzo S, Tartaro R, Barca F, et al. Internal limiting membrane peeling versus inverted flap technique for treatment of full-thickness macular holes: a comparative study in a large series of patients[J]. Retina, 2018, 38: S73-S78.
[33]
Baumann C, Kaye S, Iannetta D, et al. Effect of inverted internal limiting membrane flap on closure rate, postoperative visual acuity, and restoration of outer retinal layers in primary idiopathic macular hole surgery[J]. Retina, 2020, 40(10): 1955-1963.
[34]
Narayanan R, Singh SR, Taylor S, et al. Surgical outcomes after inverted internal limiting membrane flap versus conventional peeling for very large macular holes[J]. Retina, 2019, 39(8): 1465-1469.
[35]
Shen Y, Lin X, Zhang L, et al. Comparative efficacy evaluation of inverted internal limiting membrane flap technique and internal limiting membrane peeling in large macular holes: a systematic review and meta-analysis[J]. BMC Ophthalmol, 2020, 20(1): 1-10.
[36]
Morizane Y, Shiraga F, Kimura S, et al. Autologous Transplantation of the Internal Limiting Membrane for Refractory Macular Holes[J]. Am J Ophthalmol, 2014, 157(4): 861-869.
[37]
De Novelli FJ, Preti RC, Monteiro MLR, et al. Autologous Internal Limiting Membrane Fragment Transplantation for Large, Chronic, and Refractory Macular Holes[J]. Ophthalmic Res, 2016, 55(1): 45-52.
[38]
Dai Y, Dong F, Zhang X, et al. Internal limiting membrane transplantation for unclosed and large macular holes[J]. Graefe′s Arch Clin Exp Ophthalmol, 2016, 254(11): 2095-2099.
[39]
Lyu WJ, Ji LB, Xiao Y, et al. Treatment of refractory giant macular hole by vitrectomy with internal limiting membrane transplantation and autologous blood[J]. Int J Ophthalmol, 2018, 11(5): 114-118.
[40]
Peng J, Chen C, Jin H, et al. Autologous lens capsular flap transplantation combined with autologous blood application in the management of refractory macular hole[J]. Retina, 2018, 38(11): 2177-2183.
[41]
Chang YC, Liu PK, Kao TE, et al. Management of refractory large macular hole with autologous neurosensory retinal free flap transplantation[J]. Retina, 2020, 40(11): 2134-2139.
[42]
Zhang L, Li X, Yang X, et al. Internal limiting membrane insertion technique combined with nerve growth factor injection for large macular hole[J]. BMC Ophthalmol, 2019, 19(1): 1-8.
[43]
Degenhardt V, Busch C, Jochmann C, et al. Prognostic Factors in Patients with Persistent Full-Thickness Idiopathic Macular Holes Treated with Re-Vitrectomy with Autologous Platelet Concentrate[J]. Ophthalmologica, 2019, 242(4): 214-221.
[44]
Chhablani J, Khodani M, Hussein A, et al. Role of macular hole angle in macular hole closure[J]. Br J Ophthalmol, 2015, 99(12): 1634-1638.
[45]
Wakely L, Rahman R, Stephenson J. A comparison of several methods of macular hole measurement using optical coherence tomography, and their value in predicting anatomical and visual outcomes[J]. Br J Ophthalmol, 2012, 96(7): 1003-1007.
[46]
Kusuhara S, Teraoka Escaño MF, Fujii S, et al. Prediction of postoperative visual outcome based on hole configuration by optical coherence tomography in eyes with idiopathic macular holes[J]. Am J Ophthalmol, 2004, 138(5): 709-716.
[47]
Ullrich S, Haritoglou C, Gass C, et al. Macular hole size as a prognostic factor in macular hole surgery[J]. Br J Ophthalmol, 2002, 86(4): 390-393.
[48]
Liu P, Sun Y, Dong C, et al. A new method to predict anatomical outcome after idiopathic macular hole surgery[J]. Graefe′s Arch Clin Exp Ophthalmol, 2016, 254(4): 683-688.
[49]
Yao Y, Qu J, Dong C, et al. The impact of extent of internal limiting membrane peeling on anatomical outcomes of macular hole surgery: results of a 54-week randomized clinical trial[J]. Acta Ophthalmol, 2019, 97(3): 303-312.
[50]
Weinberger AW, Kirchhof B, Mazinani BE, et al. Persistent indocyanine green (ICG) fluorescence 6 weeks after intraocular ICG administration for macular hole surgery[J]. Graefe′s Arch Clin Exp Ophthalmol, 2001, 239(5): 388-390.
[51]
Shukla D, Kalliath J, Neelakantan N, et al. A comparison of brilliant blue g, trypan blue, and indocyanine green dyes to assist internal limiting membrane peeling during macular hole surgery[J]. Retina, 2011, 31(10): 2021-2025.
[52]
Totan Y, Güler E, Güraĝaç FB, et al. Brilliant blue G assisted macular surgery: the effect of air infusion on contrast recognisability in internal limiting membrane peeling[J]. Br J Ophthalmol, 2015, 99(1): 75-80.
[53]
Morescalchi F, Costagliola C, Gambicorti E, et al. Controversies over the role of internal limiting membrane peeling during vitrectomy in macular hole surgery[J]. Surv Ophthalmol, 2017, 62(1): 58-69.
[54]
Ghosh B, Arora S, Goel N, et al. Comparative evaluation of sequential intraoperative use of whole blood followed by brilliant blue versus conventional brilliant blue staining of internal limiting membrane in macular hole surgery[J]. Retina, 2016, 36(8): 1463-1468.
[55]
Lai JC, Stinnett SS, McCuen BW. Comparison of silicone oil versus gas tamponade in the treatment of idiopathic full-thickness macular hole[J]. Ophthalmology, 2003, 110(6): 1170-1174.
[56]
He F, Zheng L, Dong FT. Comparative study of the effects of sterilized air and perfluoropropane gas tamponades on recovery after idiopathic full-thickness macular hole surgery[J]. Zhonghua Yan Ke Za Zhi, 2017, 53(5): 327-331.
[57]
Modi A, Giridhar A, Gopalakrishnan M. Sulfurhexafluoride (SF6) versus perfluoropropane (C3F8) gas as tamponade in macular hole surgery[J]. Retina, 2017, 37(2): 283-290.
[58]
Essex RW, Kingston ZS, Moreno-Betancur M, et al. The Effect of Postoperative Face-Down Positioning and of Long- versus Short-Acting Gas in Macular Hole Surgery: Results of a Registry-Based Study[J]. Ophthalmology, 2016, 123(5): 1129-1136.
[59]
Forsaa VA, Raeder S, Hashemi LT, et al. Short-term postoperative non-supine positioning versus strict face-down positioning in macular hole surgery[J]. Acta Ophthalmol, 2013, 91(6): 547-551.
[60]
Elborgy ES, Starr MR, Kotowski JG, et al. No face-down positioning surgery for the repair of chronic idiopathic macular holes[J]. Retina, 2020, 40(2): 282-289.
[61]
Guillaubey A, Malvitte L, Lafontaine PO, et al. Comparison of Face-Down and Seated Position After Idiopathic Macular Hole Surgery: A Randomized Clinical Trial[J]. Am J Ophthalmol, 2008, 146(1): 128-134.
[62]
Hu Z, Xie P, Ding Y, et al. Face-down or no face-down posturing following macular hole surgery: a meta-analysis[J]. Acta Ophthalmol, 2016, 94(4): 326-333.
[63]
Kaiser PK, Kampik A, Kuppermann BD, et al. Safety profile of ocriplasmin for the pharmacologic treatment of symptomatic vitreomacular adhesion/traction[J]. Retina, 2015, 35(6): 1111-1127.
[64]
Schatz A, Seuthe AM, Januschowski K. Effect of Ocriplasmin on objectively assessed retinal function after treatment of vitreomacular diseases[J]. Acta Ophthalmol, 2019, 97(5): e700-e705.
[65]
Fujiwara N, Tomita G, Yagi F. Incidence and Risk Factors of Iatrogenic Retinal Breaks: 20-Gauge versus 25-Gauge Vitrectomy for Idiopathic Macular Hole Repair[J]. J Ophthalmol, 2020, 5085180: 1-4.
[66]
Yu Y, Qi B, Liang X, et al. Intraoperative iatrogenic retinal breaks in 23-gauge vitrectomy for stage 3 and stage 4 idiopathic macular holes[J]. Br J Ophthalmol, 2021, 105(1): 93-96.
[67]
Shields RA, Ludwig CA, Powers MA, et al. Postoperative adverse events, interventions, and the utility of routine follow-up after 23, 25, and 27 gauge pars plana vitrectomy[J]. Asia-Pacific J Ophthalmol, 2019, 8(1): 1-7.
[68]
Goto K, Iwase T, Akahori T, et al. Choroidal and retinal displacements after vitrectomy with internal limiting membrane peeling in eyes with idiopathic macular hole[J]. Sci Reports, 2019, 9(1): 1-10.
[69]
Baba T, Kakisu M, Nizawa T, et al. Regional densities of retinal capillaries and retinal sensitivities after macular hole surgery with internal limiting membrane peeling[J]. Retina, 2020, 40(8): 1585-1591.
[1] 林明玥, 周祁, 刘歆, 曲申, 陈开传, 吕筱, 韩雯婷, 毕燕龙. 术中光学相干断层扫描辅助玻璃体Berger腔切除术的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 199-204.
[2] 张永鹏, 曹绪胜, 李继鹏, 周海英, 贾力蕴, 徐军, 段安丽, 彭晓燕, 马凯. 黄斑部视网膜内界膜下出血行577 nm激光膜切开术的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 159-165.
[3] 张骏, 刘志南, 邹茜, 孙倬, 王浩, 王惠云, 邓国华. 玻璃体切割联合消毒空气填充术治疗特发性黄斑裂孔疗效的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 29-34.
[4] 郁艳萍, 刘武. 重视特发性黄斑裂孔的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(03): 129-134.
[5] 张先森, 李浩然, 李双双, 邓爱军. 糖尿病视网膜病变与特发性黄斑裂孔患者玻璃体酸碱度的检测与比较[J]. 中华眼科医学杂志(电子版), 2019, 09(01): 45-50.
[6] 李萱, 郝晓凤, 谢立科. 超声乳化白内障吸除联合后房型人工晶状体植入及微创玻璃体切除术治疗老年性白内障合并玻璃体后脱离的临床研究[J]. 中华眼科医学杂志(电子版), 2018, 08(03): 110-115.
[7] 陈倩茵, 张静琳, 林振德, 武哲明, 林慧敏. 白内障摘除联合人工晶状体植入术后急性感染性眼内炎的临床观察[J]. 中华眼科医学杂志(电子版), 2018, 08(01): 9-14.
[8] 刘卫东, 白赫南, 毕燃, 朱丹. 增殖性糖尿病视网膜病变行玻璃体切除术后玻璃体再积血原因及处理方法的探讨[J]. 中华眼科医学杂志(电子版), 2017, 07(06): 269-274.
[9] 孙艺梦, 马凯. 内界膜剥除术在糖尿病性黄斑水肿中的应用进展[J]. 中华眼科医学杂志(电子版), 2017, 07(04): 177-183.
[10] 周林, 李芳芳. 康柏西普辅助玻璃体切除术治疗增生型糖尿病视网膜病变[J]. 中华临床医师杂志(电子版), 2017, 11(17): 2193-2196.
阅读次数
全文


摘要