切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2020, Vol. 10 ›› Issue (03) : 166 -171. doi: 10.3877/cma.j.issn.2095-2007.2020.03.007

论著

成人睫状肌麻痹前后屈光度变化及其影响因素的流行病学研究
白大勇1, 李莉1, 魏士飞2, 李思珍3, 张烨2, 郝洁2, 王宁利4,()   
  1. 1. 100045 首都医科大学附属北京儿童医院 儿科学国家重点学科 国家儿童医学中心
    2. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室
    3. 南京 211189,东南大学附属南京同仁医院眼科
    4. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 北京市眼科学与视觉科学重点实验室;100191 北京大数据精准医疗高精尖创新中心(北京航空航天大学与首都医科大学眼科学院联合组建)
  • 收稿日期:2020-04-22 出版日期:2020-06-28
  • 通信作者: 王宁利
  • 基金资助:
    北京市属医学科研院所公益发展改革试点项目(京医研2016-5)

Epidemiological analysis on diopter and related factors before and after cycloplegia in adults

Dayong Bai1, Li Li1, Shifei Wei2, Sizhen Li3, Ye Zhang2, Jie Hao2, Ningli Wang4,()   

  1. 1. National Children′s Medical Center, Pediatric National Key Discipline, Beijing Children′s Hospital, Capital Medical University, Beijing 100045, China
    2. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
    3. Department of Ophthalmology, Nanjing Tongren Hospital, Southeast University, Nanjing 211189, China
    4. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China; College of Ophthalmology, Capital Medical College, Beihang University, Beijing 100191, China
  • Received:2020-04-22 Published:2020-06-28
  • Corresponding author: Ningli Wang
引用本文:

白大勇, 李莉, 魏士飞, 李思珍, 张烨, 郝洁, 王宁利. 成人睫状肌麻痹前后屈光度变化及其影响因素的流行病学研究[J]. 中华眼科医学杂志(电子版), 2020, 10(03): 166-171.

Dayong Bai, Li Li, Shifei Wei, Sizhen Li, Ye Zhang, Jie Hao, Ningli Wang. Epidemiological analysis on diopter and related factors before and after cycloplegia in adults[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2020, 10(03): 166-171.

目的

探讨成人睫状肌麻痹前后屈光度变化及其影响因素的流行病学特点。

方法

收集2012年5月至2013年6月在中国河北省邯郸永年县进行眼科屈光检查710例(1410只眼)的资料。其中,男性364例(721只眼),女性346例(689只眼);年龄30~83岁,平均年龄(50.9±10.3)岁。采用自动电脑验光仪检测所有受检者睫状肌麻痹前后的屈光度。采用眼科A型超声检查所有受检者睫状肌麻痹前的眼部生物学参数。所有受检者睫状肌麻痹前后等效球镜(SE)的描述采用均数±标准差表示,两者的比较采用配对t检验。不同年龄受检者睫状肌麻痹前后SE的一致性,采用Bland-Altman plots进行评估。不同性别间睫状肌麻痹后SE与睫状肌麻痹前角膜曲率K值(K)、前房深度(ACD)、眼轴长度(AL)、睫状肌麻痹后中央角膜厚度(LT)、晶状体混浊程度(NO)、晶状体核的颜色(NC)、晶状体皮质(C)及晶状体后囊下混浊的程度(PSC)的比较,采用线性混合模型分析。采用Pearson相关分析检验各屈光指标间的相关性。

结果

710例(1410只眼)受检者睫状肌麻痹前的平均SE为(-0.37±1.22)D,睫状肌麻痹后的平均SE为(0.13±1.11)D。经t检验,两者的差异有统计学意义(t=-25.75,P<0.05)。Bland-Altman plots分析显示睫状肌麻痹后的SE发生远视漂移,且随年龄的增加该漂移逐渐减小。所有受检者睫状肌麻痹前的K值、CCT、ACD及AL,以及睫状肌麻痹后的LT、NO、NC、C及PSC分别为(44.02±1.51)D、(2.88±0.36)mm、(23.07±0.95)mm、(4.52±0.41)mm、(2.72±0.43)、(2.72±0.43)、(0.26±0.63)及(0.13±0.26)。睫状肌麻痹后的LT、NO、NC、C与SE呈正相关。经Pearson相关分析,其相关性具有统计学意义(r=0.13,0.11,0.11,0.07;P<0.05)。受检者睫状肌麻痹前的K值、ACD、AL及睫状肌麻痹后的PSC与SE呈负相关(r=-0.12,-0.17,-0.20,-0.13;P<0.05)。近视眼与睫状肌麻痹前的AL、睫状肌麻痹后的NO、NC、C及PSC呈负相关。经Pearson相关分析,其相关性具有统计学意义(r=-0.22,-0.15,-0.15,-0.14,-0.42;P<0.05)。

结论

受检者睫状肌麻痹后SE发生明显的远视漂移,且随年龄增加此现象逐渐减小。睫状肌麻痹前的K、ACD、AL,以及睫状肌麻痹后的LT、NO、NC、C和PSC均与SE相关,其中影响近视眼的因素有AL、NO、NC、C及PSC。

Objective

The aim of this study was to explore the changes of diopter measurement before and after cycloplegia in adults and analysis of its related factors.

Methods

710 rural people (1410 eyes) in Yongnian County of Handan, Northern China were selected to participate in the measurement of diopter and ocular biological parameters. Among of them, there were 364 male (721 eyes) and 346 female (689 eyes). Automatic computer refractometer was used for diopter between after and before cycloplegia. Ocular biological parameters were taken by Ophthalmic A-scan before cycloplegia. Paired t-test was used for SE before and after cycloplegia. The consistency of SE before and after cycloplegia was evaluated by Bland-Altman plots among different age groups. The comparison between corneal curvature (K), len thickness (LT), anerior chamber depth (ACD), axis length (AL), nuclear opacity (NO), nuclear color (NC), cortical (C), posterior subcapsular cataract (PSC) and SE after cycloplegia in different genders was analyzed by linear mixed model. Pearson correlation analysis was used for ocular biological parameters.

Results

The mean SE of 710 cases (1410 eyes) before and after cycloplegia was respectively (-0.37±1.22) D and (0.13±1.11) D with statistical significance (t=-25.75, P<0.05). Bland-Altman analysis showed that the hyperopia drift of SE after cycloplegia decreased with the increasing of age. The characteristics of LT, NO, NC, C were positively correlated with SE after cycloplegia. After Person correlation analysis, there was significant difference among them (r=0.13, 0.11, 0.11, 0.07; P<0.05). There was a negative correlation between K, ACD, AL, PSC and SE. After Person correlation analysis, there was significant difference among them (r=-0.12, -0.17, -0.20, -0.13; P<0.05). Myopia was negatively correlated with Al, NO, NC, C and PSC. After Person correlation analysis, there was significant difference among them (r=-0.22, -0.15, -0.15, -0.14, -0.42; P<0.05).

Conclusions

The hyperopia shift of SE occurred after cycloplegia, which disappeared with the increasing of age. K, ACD, LT, AL, NO, NC, C and PSC were all related to SE after cycloplegia, among which AL, NO, NC, C and PSC were the influencing factors for myopia.

图1 不同年龄受检者睫状肌麻痹前后等效球镜的一致性Bland-Altman plots分析图 图A~D分别示≥30岁且≤39岁、>39岁且≤49岁、>49岁且≤59岁及>59岁受检者睫状肌麻痹前后等效球镜的一致性Bland-Altman plots分析图;虚线代表95%的一致性界限
表1 不同性别受检者睫状肌麻痹前后各屈光相关参数的比较(±s)
[8]
Virgili G, Angi M, Molinari A, et al. Cox regression was used to compare the measurement error of two tests vs a gold standard[J]. J Clin Epidemiol, 2007, 60(4): 345-349.
[9]
Zhao J, Mao J, Luo R, et al. Accuracy of noncycloplegic autorefraction in school-age children in China[J]. Optom Vis Sci, 2004, 81(1): 49-55.
[10]
Fotedar R, Rochtchina E, Morgan I, et al. Necessity of cycloplegia for assessing refractive error in 12-year-old children: a population based study[J]. Am J Ophthalmol, 2007, 144(2): 307-309.
[11]
Wilde GS, Burd HJ, Judge SJ. Shear modulus data for the human lens determined from a spinning lens test[J]. Exp Eye Res, 2012, 97(1): 36-48.
[12]
Weeber HA, Eckert G, Pechhold W, et al. Stiffness gradient in the crystalline lens[J]. Graefes Arch Clin Exp Ophthalmol, 2007, 245(9): 1357-1366.
[13]
Heys KR, Cram SL, Truscott RJ. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia[J]. Mol Vis, 2004, 10: 956-963.
[14]
McGinty SJ, Truscott RJ. Presbyopia: the first stage of nuclear cataract[J] Ophthalmic Res, 2006, 38(3): 137-148.
[15]
Dubbelman M, van der Heijde GL, Weeber HA, et al. Changes in the internal structure of the human crystalline lens with age and accommodation[J]. Vision Res, 2003, 43(22): 2363-2375.
[16]
Katie MW, Virginie JM, Phillippa C, et al. Prevalence of refractive error in Europe: the European Eye Epidemiology (E(3)) Consortium[J]. Eur J Epidemiol, 2015, 30(4): 305-315.
[17]
Sawada A, Tomidokoro A, Araie M, et al. Refractive errors in an elderly Japanese population: the Tajimi study[J]. Ophthalmology, 2008, 115(2): 363-370.
[18]
Xu L, Li Jian, Cui T, et al. Refractive error in urban and rural adult Chinese in Beijing[J].Ophthalmology, 2005, 112(10): 1676-1683.
[19]
Nangia V, Jonas JB, Sinha A, et al. Central corneal thickness and its association with ocular and general parameters in Indians: the central India eye and medical study[J]. Ophthalmology, 2010, 117(4): 705-710.
[20]
Lin LL, Shih YF, Tsai CB, et al. Epidemiologic study of ocular refraction among school children in Taiwan in 1995[J]. Optom Vis Sci, 1999, 76(5): 275-281.
[21]
Lee J, Guo X, Li Z, et al. Progression and longitudinal biometric changes in highly myopic eyes[J]. Invest Ophthalmol Vis Sci, 2020, 61(4): 1-7.
[22]
McBrien NA, Jobling A, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors[J].Optom Vis Sci, 2009, 86(1): E23-E30.
[23]
Chen M, Liu Y, Tsai CC. Relationship between central corneal thickness, refractive error, corneal curvature, anterior chamber depth and axial length[J]. J Chin Med Assoc, 2009, 72(3): 133-137.
[1]
Reynolds ME, Taubman SB, Stahlman S. Incidence and prevalence of selected refractive errors, active component, U.S. Armed Forces, 2001—2018[J]. MSMR, 2019, 26(9): 26-30.
[2]
Hassan H, Akbar F, Abbasali Y, et al.Global and regional estimates of prevalence of refractive errors: systematic review and meta-analysis[J]. J Curr Ophthalmol, 2017, 30(1): 3-22.
[3]
白大勇,于刚,王宁利.成年人屈光不正的研究进展[J/CD].中华眼科医学杂志(电子版)20144(2):102-105.
[4]
白大勇.屈光不正检测方法及验光策略规范化的研究进展[J/CD].中华眼科医学杂志(电子版)20144(4):229-231.
[5]
Liang YB, Wong TY, Sun LP, et al.Refractive errors in a rural Chinese adult population: the handan eye study[J].Ophthalmology, 2009, 116(11): 2119-2127.
[6]
王宁利,王凤华,梁远波.河北省永年县成年人主要致盲眼病现状调查:邯郸眼病研究进展报告[J].首都医科大学学报201031(1):11-17.
[7]
Elizabeth M, Krantz MS, Karen J. Measuring refraction in adults in epidemiological studies[J]. Arch Ophthalmol, 2010, 128(1): 88-92.
[24]
Chang SW, Tsai IL, Hu FR, et al. The cornea in young myopic adults[J]. Br J Ophthalmol, 2001, 85(8): 961-970.
[25]
Goss DA, Van Veen HG, Rainey BB, et al. Ocular components measured by keratometry, phakometry, and ultrasonography in emmetropic and myopic optometry students[J]. Optom Vis Sci, 1997, 74(7): 489-495.
[26]
Fam HB, How AC, Baskaran M, et al. Central corneal thickness and its relationship to myopia in Chinese adults[J]. Br J Ophthalmol, 2006, 90(12): 1451-1453.
[27]
Zhang H, Xu L, Chen C, et al. Central corneal thickness in adult Chinese: association with ocular and general parameters. The Beijing Eye Study[J]. Graefes Arch Clin Exp Ophthalmol, 2008, 246(4): 587-592.
[28]
You QS, Choy BK, Chan JC, et al. Prevalence and causes of visual impairment and blindness among Adult Chinese in Hong Kong-The Hong Kong Eye Study[J].Ophthalmic Epidemiol, 2020, 20(1): 1-10.
[29]
Tong L, Saw SM, Siak JK, et al. Corneal thickness determination and correlates in Singaporean school children[J].Invest Ophthalmol Vis Sci, 2004, 45(11): 4004-4009.
[30]
Chen Y, Toshimitsu K, Hsin-Jui L, et al. Correlation between central corneal thickness and myopia in Taiwan[J]. Kaohsiung J Med Sci, 2014, 30(1): 20-24.
[31]
Oliveira C, Tello C, Liebmann J, et al. Central corneal thickness is not related to anterior scleral thickness or axial length[J]. J Glaucoma, 2006, 15(3): 190-194.
[32]
Christine Y, Mitchell P, Cumming RG, et al. Myopia and incident cataract and cataract surgery: the Blue Mountains Eye Study[J]. Invest Ophthalmol Vis Sci, 2002, 43: 3625-3632.
[33]
Wong TY, Klein BE, Klein R, et al. Refractive errors and incident cataracts: the Beaver Dam Eye Study[J].Invest Ophthalmol Vis Sci, 2001, 42(7): 1449-1454.
[34]
Lim R, Mitchell P, Cumming RG. Refractive associations with cataract: the Blue Mountains Eye Study[J]. Invest Ophthalmol Vis Sci, 1999, 40(12): 3021-3026.
[35]
Chang MA, Congdon NG, Bykhovskaya I, et al. The association between myopia and various subtypes of lens opacity: SEE (Salisbury Eye Evaluation) project[J]. Ophthalmology, 2005, 112(8): 1395-1401.
[36]
Bomotti S, Lau B, Klein BE, et al. Refraction and change in refraction over a 20-year period in the Beaver Dam Eye Study[J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4518-4524.
[37]
Michael R, Pareja-Aricò L, Rauscher FG, et al. Cortical cataract and refractive error[J]. Ophthalmic Res, 2019, 62(3): 157-165.
[38]
Kubo E, Kumamoto Y, Tsuzuki S, et al. Axial length, myopia, and the severity of lens opacity at the time of cataract surgery[J]. Arch Ophthalmol, 2006, 124(11): 1586-1590.
[39]
Wong TY, Foster PJ, Johnson GJ, et al. Refractive errors, axial ocular dimensions, and age-related cataracts: the Tanjong Pagar survey[J]. Invest Ophthalmol Vis Sci, 2003, 44(4): 1479-1485.
[40]
Pan CW, Boey PY, Cheng CY, et al. Myopia, axial length, and age-related cataract: the Singapore Malay eye study[J]. Invest Ophthalmol Vis Sci, 2013, 54(7): 4498-4502.
[1] 黄珈瑶, 林满霞, 田文硕, 何璟怡, 赖佳明, 谢晓燕, 龙海怡. 健康成人胰腺剪切波弹性成像的可行性和测量值及其影响因素[J]. 中华医学超声杂志(电子版), 2023, 20(05): 524-529.
[2] 王德运, 褚志刚, 栾夏刚. 重症烧伤的早期救治[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 383-388.
[3] 郭冬会, 马艳宁, 秦文, 王宪, 金作林, 高洁. 未正畸人群面部软组织随时间变化的三维初步研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(04): 279-284.
[4] 刘翠翠, 吴亚星, 李晨晨, 张淑婷, 张静. 微型支抗钉矫治成人骨性Ⅲ类错畸形的研究进展[J]. 中华口腔医学研究杂志(电子版), 2022, 16(02): 125-129.
[5] 万顷, 邓先锐, 何婷, 郑磊, 陈虹豆, 王永. 腹腔镜与开放腹膜前疝修补手术治疗成人腹股沟疝的成本效益分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 91-95.
[6] 王亮, 刘梅宝, 张涛, 赖家骏, 翁伟明, 曾德强, 李定云, 朱晓峰, 谭逸衍. 快速康复外科理念在成人腹股沟疝日间手术的应用体会[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(06): 721-724.
[7] 吴芳芳, 俞永江. 成人嵌顿/绞窄性腹股沟疝的诊疗进展[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(05): 502-504.
[8] 刘佳铭, 孙晓容, 文健, 何晓丽, 任茂玲. 有氧运动对成人哮喘肺功能、生活质量以及哮喘控制影响的Meta分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 592-595.
[9] 宋红欣, 孙璐, 王庆强. 近视性屈光参差少年儿童眼部屈光生物学参数的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 88-93.
[10] 付玥川, 陶晨. 角膜塑形镜对儿童青少年低度近视眼进展控制长期效果及其影响因素的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 287-292.
[11] 程英, 安文在, 林丹婷, 王宁利. 肠道菌群与眼部常见疾病关系的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 305-309.
[12] 王子杨, 杨文利. 关注屈光性白内障手术时代的精准眼球生物测量[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 193-197.
[13] 许馨月, 陈涛, 苏玉婷, 张作明. 青少年近视眼预防与控制技术研究的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 173-177.
[14] 李长栋, 王志宏, 蔡霞. 成人颅骨修补术后并发症及其防治策略[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 108-111.
[15] 王雪, 赵名娟, 方永莉. 成人复发型急性播散性脑脊髓炎的诊断学特征并文献复习[J]. 中华诊断学电子杂志, 2022, 10(01): 21-25.
阅读次数
全文


摘要