[1] |
Mitchell P, Liew G, Gopinath B,et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147-1159.
|
[2] |
Baran J, Gerner M, Haeussler M, et al. Pubmed2ensembl: a resource for mining the biological literature on genes[J] . PLoS One, 2011, 6: e24716.
|
[3] |
Pedro C, Monica C, Francisco T, et al. GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists[J] . Genome Biol, 2007, 8: R3.
|
[4] |
Damian S, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2020, 49(D1): D605-612.
|
[5] |
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J] . Genome Res, 2003, 13: 2498-2504.
|
[6] |
Chin CH, Chen SH, Wu HH, et al. CytoHubba: identifying hub objects and sub-networks from complex interactome[J] . BMC Syst Biol, 2014, 8(S4): S11.
|
[7] |
Bader GD, Hogue C. An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4(1): 2.
|
[8] |
Huang DW, Sherman B, Lempicki R, et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4: 44-57.
|
[9] |
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis[J]. Lancet Glob Health, 2014, 2(2): e106-e116.
|
[10] |
Gheorghe A, Mahdi L, Musat O, et al. Age-related macular degeneration[J].Rom J Ophthalmol, 2015, 59: 74-77.
|
[11] |
Inzalkar P, Sharma J. A survey on text mining-techniques and application[J]. Int J Eng Sci, 2015, 24: 1-14.
|
[12] |
孟欢,金明. 干性年龄相关性黄斑变性免疫学机制的研究进展[J]. 国际眼科杂志,2021,21(1):66-70.
|
[13] |
Nahavandipour A, Krogh N, Srensen T, et al. Systemic levels of interleukin-6 in patients with age-related macular degeneration: a systematic review and meta-analysis[J]. Acta Ophthalmol, 2020, 98(5): 434-444.
|
[14] |
Chen M, Lechner J, Zhao J, et al. STAT3 activation in circulating monocytes contributes to neovascular age-related macular degeneration[J] . Curr Mol Med, 2016, 16: 412-423.
|
[15] |
Ammar MJ, Hsu J, Chiang A, et al. Age-related macular degeneration therapy: a review[J]. Curr Opin Ophthalmol, 2020, 31: 215-221.
|
[16] |
Fleckenstein M, Mitchell P, Freund KB, et al. The progression of geographic atrophy secondary to age-related macular degeneration[J]. Ophthalmology, 2018, 125(3): 369-390.
|
[17] |
Krogh N, Subhi Y, Molbech C, et al. Systemic levels of interleukin-6 correlate with progression rate of geographic atrophy secondary to age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2019, 60(1): 202-208.
|
[18] |
Hamilton TA, Ohmori Y, Tebo J. Regulation of chemokine expression by antiinflammatory cytokines[J]. Immunol Res, 2002, 25(3): 229-245.
|
[19] |
Vilkeviciute A, Cebatoriene D, Kriauciuniene L, et al. IL9 and IL10 single-nucleotide variants and serum levels in age-related macular degeneration in the caucasian population[J]. Mediat Inflamm, 2021: e6622934.
|
[20] |
Ijima R, Kaneko H, Ye F, et al.Interleukin-18 induces retinal pigment epithelium degeneration in mice[J]. Invest Ophthalmol Vis Sci, 2014, 55: 6673-6678.
|
[21] |
Motohashi R, Noma H, Yasuda K, et al. Dynamics of inflam-matory factors in aqueous humor during ranibizumab or aflibercept treatment for age-related macular degeneration[J]. Ophthalmic Res, 2017, 58: 209-216.
|
[22] |
Ulhaq ZS, Soraya GV. Roles of IL8-251A/T and +781C/T polymorphisms, IL8 level, and the risk of age-related macular degeneration[J].Arch Soc Esp Oftalmol, 2021, 96: 476-487.
|
[23] |
Huang H, Gandhi JK, Zhong X, et al. TNFα is required for late BRB breakdown in diabetic retinopathy, and its inhibition prevents leukostasis and protects vessels and neurons from apoptosis[J]. Invest Ophthalmol Vis Sci, 2011, 52: 1336-1344.
|
[24] |
Fernández VB, Fernández VÁ, Rangel C, et al. Blockade of tumor necrosis factor-alpha: arole for adalimumab in neovascular age-related macular degeneration refractory to anti-angiogenesis therapy[J]. Case Rep Ophthalmol, 2016, 7: 154-162.
|
[25] |
Wan L, Lin HJ, Tsai Y, et al. Tumor necrosis factor-α gene polymorphisms in age-related macular degeneration[J]. Retina, 2010, 30(10): 1595-1600.
|
[26] |
Chen M, Xu H. Parainflammation, chronic inflammation, and age-related macular degeneration[J]. J Leukoc Biol, 2015, 98(5): 713-725.
|
[27] |
Huang P, Liu W, Chen J, et al. TRIM31 inhibits NLRP3 inflammasome and pyroptosis of retinal pigment epithelial cells through ubiquitination of NLRP3[J]. Cell Biol Int, 2020, 44(11): 2213-2219.
|
[28] |
Liu XC, Guo XH, Chen X, et al. Toll-like receptor 4 gene polymorphisms rs4986790 and rs4986791 and age-related macular degeneration susceptibility: a meta-analysis[J]. Ophthalmic Genet, 2020, 41(1): 31-35.
|
[29] |
Yang Zl, Stratton C, Francis PJ, et al. Toll-like receptor 3 and geographic atrophy in age-related macular degeneration[J] . N Engl J Med, 2008, 359: 1456-1663.
|
[30] |
Wang S, Liu C, Ouyang W, et al. Common genes involved in autophagy, cellular senescence and the inflammatory response in AMD and drug discovery identified via biomedical databases[J]. Transl Vis Sci Technol, 2021, 10(1): 14.
|