切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (01) : 28 -37. doi: 10.3877/cma.j.issn.2095-2007.2019.01.005

论著

磁共振成像在测量视神经周围蛛网膜下腔宽度中的应用
孙海华1, 王雪1, 吴志鸿1,(), 董玉茹2, 汪东生3   
  1. 1. 100039 北京,解放军总医院第三医学中心眼科
    2. 100039 北京,解放军总医院第三医学中心磁共振科
    3. 100730 首都医科大学附属北京同仁医院眼科中心 北京市眼科学与视觉科学重点实验室
  • 收稿日期:2018-11-16 出版日期:2019-02-28
  • 通信作者: 吴志鸿
  • 基金资助:
    国家卫计委卫生行业科研专项基金(201002019); 武警总部课题(WJHQ2012-23); 首都医科大学合作科研项目(431414c)

Application of magnetic resonance imaging in measuring the width of optic nerve subarachnoid space width

Haihua Sun1, Xue Wang1, Zhihong Wu1,(), Yuru Dong2, Dongsheng Wang3   

  1. 1. Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing 100039, China
    2. Department of Magnetic Resonance, The Third Medical Center of Chinese PLA General Hospital, Beijing, Beijing 100039, China
    3. Department of Ophthalmology, Beijing Tongren Hospital of Capital Medical University, Beijing Ophthalmology & Visual Science Key Lab, Beijing 100730, China
  • Received:2018-11-16 Published:2019-02-28
  • Corresponding author: Zhihong Wu
引用本文:

孙海华, 王雪, 吴志鸿, 董玉茹, 汪东生. 磁共振成像在测量视神经周围蛛网膜下腔宽度中的应用[J]. 中华眼科医学杂志(电子版), 2019, 09(01): 28-37.

Haihua Sun, Xue Wang, Zhihong Wu, Yuru Dong, Dongsheng Wang. Application of magnetic resonance imaging in measuring the width of optic nerve subarachnoid space width[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(01): 28-37.

目的

研究磁共振成像(MRI)的T2加权序列测量健康人、正常眼压性青光眼(NTG)、高眼压性青光眼(HTG)及高眼压症(OHT)患者视神经周围蛛网膜下腔宽度(ONSASW)的可行性。

方法

收集2013年5月至2014年12月武警总医院眼科就诊的NTG患者15例(30只眼)。男性11例(22只眼),女性4例(8只眼),平均年龄(50.1±5.1)岁;HTG患者27例(54只眼),男性19例(38只眼),女性8例(16只眼),平均年龄(51.4±6.2)岁;OHT患者12例(24只眼),男性9例(18只眼),女性3例(6只眼),平均年龄(48.5±4.8)岁;健康人32例(64只眼),男性17例(34只眼),女性15例(30只眼),平均年龄(48.3±6.8)岁。全部患者行眶内段视神经MRI检查,测量球后3 mm、9 mm及15 mm处视神经直径及视神经鞘直径。对各组眶内段视神经、视神经鞘和ONSASW,采用两因素重复测量方差进行组间和组内比较。

结果

NTG组、HTG组和OHT组患者的性别、年龄、身高、体重及平均动脉血压与对照组相比,差异无统计学意义(χ2=3.31;F=1.43,0.64,0.78,0.82,0.85;P>0.05)。球后3 mm、9 mm及15 mm处测量的平均视神经直径,NTG组分别为(3.20±0.23)mm、(2.56±0.18)mm及(2.42±0.18)mm;HTG组分别为(3.29±0.28)mm、(2.52±0.19)mm及(2.26±0.20)mm;OHT组分别为(3.38±0.21)mm、(2.60±0.15)mm及(2.32±0.15)mm;对照组分别为(3.33±0.17)mm、(2.85±0.12)mm及(2.68±0.87)mm。同组内3个测量位比较,距离球后越远,视神经直径越短,差异有统计学意义(F=13.59,18.57,17.54,16.51;P<0.05)。在球后3 mm处,NTG组较OHT组短,差异有统计学意义(t=2.12,P<0.05)。在球后9 mm处,HTG和NTG组均比对照组短,差异有统计学意义(t=3.45,3.12;P<0.05)。在球后15 mm处,HTG组较对照组短,差异有统计学意义(t=2.45,P<0.05)。球后3 mm、9 mm及15 mm处测量的平均视神经鞘直径,NTG组分别为(4.56±0.26)mm、(3.67±0.32)mm及(3.35±0.21)mm;HTG组分别为(5.11±0.35)mm、(3.90±0.23)mm及(3.90±0.14)mm;OHT组分别为(5.32±0.25)mm、(3.89±0.26)mm及(3.92±0.13)mm;对照组分别为(5.03±0.23)mm、(4.22±0.10)mm及(3.88±0.14)mm。同组内3个测量位比较,差异有统计学意义(F=406.15,202.72,107.54,411.35;P<0.05)。球后3 mm、9 mm及15 mm处,NTG组平均视神经鞘直径均较对照组、HTG组和OHT组短,差异有统计学意义(t=6.26,5.31,7.68;P<0.05)、(t=8.92,4.78,4.35;P<0.05)及(t=3.67,3.97,4.35;P<0.05)。球后3 mm、9 mm及15 mm处测量的ONSASW,NTG组分别为(0.67±0.10)mm、(0.55±0.08)mm及(0.50±0.08)mm;HTG组分别为(0.84±0.07)mm、(0.67±0.04)mm及(0.62±0.06)mm;OHT组分别为(0.90±0.07)mm、(0.74±0.04)mm及(0.66±0.03)mm;对照组分别为(0.86±0.08)mm、(0.66±0.03)mm及(0.61±0.04)mm。球后ONSASW越向眶尖越窄,差异有统计学意义(F=188.76,106.66,15.07,30.45;P<0.05)。在球后3 mm处,NTG组较HTG组、OHT组及对照组窄,差异有统计学意义(t=5.82,7.83,6.55;P<0.05);OHT组较HTG组宽,差异有统计学意义(t=2.47,P<0.05)。在球后9 mm处,NTG组较HTG组、OHT组及对照组窄,差异有统计学意义(t=3.34,5.42,3.24;P<0.05);OHT组较HTG组及对照组宽,差异具有统计学意义(t=2.45,2.14;P<0.05)。在球后15 mm处,NTG组较HTG组、OHT组及对照组窄,差异有统计学意义(t=3.21,4.14,2.98;P<0.05);OHT组较HTG组及对照组宽,差异有统计学意义(t=3.92,4.01;P<0.05)。

结论

MRI的T2加权序列技术测量ONSASW是可行的;距离球后越远,ONSASW越窄,视神经直径越短;HTG患者与NTG患者神经直径比健康人短;NTG患者ONSASW最窄,OHT患者最宽,健康人和HTG患者居中。

Objective

The aim of this study was to study the feasibility of detecting optic nerve subarachnoid space width (ONSWASW) in healthy people, normal intraocular pressure glaucoma (NTG) patients, high intraocular pressure glaucoma (HTG) patients, and ocular hypertension (OHT) patients, with T2-weighted sequence of magnetic resonance imaging, and analyze the characteristics of ONSASW.

Methods

From May 2013 to December 2014, 15 NTG patients (30 eyes), 11 males (22 eyes), 4 females (8 eyes), an average age of (50.1±5.1), 27 HTG patients (54 eyes), 19 males (38 eyes), 8 females (16 eyes), an average age of (51.4±6.2), 12 OHT patients (24 eyes), 9 males (18 eyes), 3 females (6 eyes), an average age of (48.5±4.8), 32 healthy people (64 eyes), 17 males (34 eyes), 15 females (30 eyes), an average age of (48.3±6.8), were collected in the Third Medical Center of Chinese PLA General Hospital. The intraorbital optic nerve of all the subjects was examined by MRI to measure the diameter of optic nerve and optic nerve sheath at 3 mm, 9 mm, and 15 mm behind the bulbus oculi. Intraorbital optic nerve, optic nerve sheath, and ONSASW were measured repeatly between groups, and compared by two-factor repeated measurement variance analysis.

Results

There was no significant difference between NTG group, HTG goup, OHT group, and control group on sex, age, height, weight, and mean arterial pressure (χ2=3.31; F=1.43, 0.64, 0.78, 0.82, 0.85; P>0.05). The diameter of optic nerve, at 3 mm, 9 mm, and 15 mm behind the bulbus oculi, of NTG group was (3.20±0.23) mm, (2.56±0.18) mm, and (2.42±0.18) mm, HTG group was (3.29±0.28) mm, (2.52±0.19) mm, and (2.26±0.20) mm, OHT group was (3.38±0.21) mm, (2.60±0.15) mm, and (2.32±0.15) mm, control group was (3.33±0.17) mm, (2.85±0.12) mm, and (2.68±0.87) mm, respectively. Compared with the three measurement positions in the same group, the diameter of the optic nerve was shorter if farther from the back of bulbus oculi, which showed statistically significant difference (F=13.59, 18.57, 17.54, 16.51; P<0.05). At 3 mm behind the bulbus oculi, the diameter of the optic nerve of NTG group was shorter than that of OHT group, which showed statistical significance difference (t=2.12, P<0.05); at 9 mm both HTG group and NTG group were shorter than control group (t=3.45, 3.12; P<0.05); at 15 mm HTG group was shorter than control group (t=2.45, P<0.05). The diameter of optic nerve sheath, at 3 mm, 9 mm, and 15 mm behind the bulbus oculi, of NTG group was (4.56±0.26) mm, (3.67±0.32) mm, and (3.35±0.21) mm, HTG group was (5.11±0.35) mm, (3.90±0.23) mm, and (3.90±0.14) mm, OHT group was (5.32±0.25) mm, (3.89±0.26) mm, and (3.92±0.13) mm, control group was (5.03±0.23) mm, (4.22±0.10) mm, and (3.88±0.14) mm, respectively, which showed statistically significant difference in the same group (F=406.15, 202.72, 107.54, 411.35; P<0.05), while, shorter in NTG group compared with control group, HTG group, and OHT group (3 mm: t=6.26, 5.31, 7.68; P<0.05. 9 mm: t=8.92, 4.78, 4.35; P<0.05. 15 mm: t=3.67, 3.97, 4.35; P<0.05). The ONSASW, at 3 mm, 9 mm, and 15 mm behind the bulbus oculi, of NTG group was (0.67±0.10) mm, (0.55±0.08) mm, and (0.50±0.08) mm, HTG group was (0.84±0.07) mm, (0.67±0.04) mm, and (0.62±0.06) mm, OHT group was (0.90±0.07) mm, (0.74±0.04) mm, and (0.66±0.03) mm, and control group was (0.86±0.08) mm, (0.66±0.03) mm, and (0.61±0.04) mm, respectively. The ONSASW would become narrow if near to orbit apex, which showed statistically significant difference (F=188.76, 106.66, 15.07, 30.45; P<0.05). At 3 mm behind the bulbus oculi, the ONSASW of NTG group was narrower than that of HTG group, OHT group, and control group (t=5.82, 7.83, 6.55; P<0.05), while, OHT group was wider than HTG group (t=2.47, P<0.05). At 9 mm behind the bulbus oculi, the ONSASW of NTG group was narrower than that of HTG group, OHT group, and control group (t=3.34, 5.42, 3.24; P<0.05), while, OHT group was wider than HTG group and control group (t=2.45, 2.14; P<0.05). At 15 mm behind the bulbus oculi, the ONSASW of NTG group was narrower than that of HTG group, OHT group, and control group (t=3.21, 4.14, 2.98; P<0.05), while, OHT group was wider than HTG group and control group (t=3.92, 4.01; P<0.05).

Conclusion

ONSASW could be measured by MRI T2 weighted sequence. The ONSASW is narrower and diameter of the optic nerve is shorter if farther from the back of the bulbus oculi. The diameter of optic nerve of HTG and NTG patients is shorter than healthy people. The ONSASW of NTG patients is the narrowest, OHT patients is the widest, healthy people and HTG patients were in middle.

表1 HTG组、NTG组、OHT组及对照组临床资料的比较(±s)
图1 磁共振成像检测球后3 mm、9 mm及15 mm的视神经与视神经鞘复合体的斜冠状位扫描图像 图中圆圈的黑色区域为视神经,外围的白色区域为脑脊液空间,在脑脊液空间外围为视神经鞘;每行图从左至右依次为球后3 mm、9 mm及15 mm的视神经与视神经鞘复合体。图A~C示健康受试者(女性,56岁),可见视神经及ONSASW随着与球后距离的增加而变细和变窄;图D~F示NTG患者(男性,50岁),可见ONSASW较窄,信号强度基本等同健康受试者;图G~I示HTG患者(男性,45岁),可见视神经直径较健康受试者短,但是ONSASW和信号强度基本等同于健康受试者;图J~L示OHT患者(女性,52岁),可见ONSASW较宽,信号强度基本等同于健康受试者
表2 HTG组、NTG组、OHT组及对照组球后不同位置视神经直径的比较(±s ,mm)
表3 HTG组、NTG组、OHT组及对照组球后不同位置视神经鞘直径的比较(±s ,mm)
表4 HTG组、NTG组、OHT组及对照组球后不同位置ONSASW的比较(±s ,mm)
[1]
Cherecheanu AP, Garhofer G, Schmidl D, et al. Ocular perfusion pressure and ocular blood flow in glaucoma[J]. Curr Opin Pharmacol, 2013, 13(1): 36-42.
[2]
Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020[J]. Br J Ophthalmol, 2006, 90(3): 262-267.
[3]
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090.
[4]
戴毅,孙兴怀. 从流行病学角度认识青光眼的特点与危害[J]. 中国眼耳鼻喉科杂志201616(3):179-181.
[5]
田佳鑫. 原发性开角型青光眼与血流异常的关系[J]. 中华实验眼科杂志201836(8):643-648.
[6]
Nickells RW, Howell GR, Soto I, et al. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy[J]. Annu Rev Neurosci, 2012, 35(1): 153-179.
[7]
Gallego BI, Salazar JJ, de Hoz R, et al. IOP induces upregulation of GFAP and MHC-Ⅱ and microglia reactivity in mice retina contralateral to experimental glaucoma[J]. J Neuroinflammation, 2012, 9(1): 92.
[8]
Shoujin W, Jing Z. Color Doppler imaging in primary open-angle glaucoma[J]. Chinese Journal of Practical Opht, 2001, 19(9): 674-677.
[9]
Meng N, Zhang P, Huang H, et al. Color Doppler imaging analysis of retrobulbar blood flow velocities in primary open-angle glaucomatous eyes: a meta-analysis[J]. PLoS One, 2013, 8(5): e62723.
[10]
Zhang XR, Chen QJ, Chen LM, et al. Color Doppler imaging analysis of ocular hemodynamics in patients with glaucoma[J]. Chin J PractOphthalmol, 2001, 19(8): 610-612.
[11]
Wang X, Jiang C, Ko T, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(9): 1557-1564.
[12]
许欢,孔祥梅. 原发性开角型青光眼黄斑区视网膜微循环和结构损伤的研究[J]. 中华眼科杂志201753(2):98-101.
[13]
Leske MC, Wu SY, Hennis A, et al. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies[J]. Ophthalmology, 2008, 115(1): 85-93.
[14]
Topouzis F, Founti P. Weighing in ocular perfusion pressure in managing glaucoma[J]. Open Ophthalmol J, 2009, 3(1): 43-45.
[15]
Deokule S, Weinreb RN. Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma[J]. Can J Ophthalmol, 2008, 43(3): 302-307.
[16]
Choi J, Jeong J, Cho HS, et al. Effect of nocturnal blood pressure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk factor for normal tension glaucoma[J]. Invest Ophthalmol Vis Sci, 2006, 47(3): 831-836.
[17]
de Oliveira AP, Kasahara N. Correlation between ocular perfusion pressure fluctuation and glaucoma severity[J]. Int Ophthalmol, 2015, 35(2): 187-192.
[18]
李浩,吴志鸿. 眼灌注压波动与青光眼关系的研究进展[J]. 中华眼科杂志201551(6):477-480.
[19]
Chen YJ, Huang YS, Chen JT, et al. Protective effects of glucosamine on oxidative-stress and ischemia/reperfusion-induced retinal injury[J]. Invest Ophthalmol Vis Sci, 2015, 56(3): 1506-1516.
[20]
Qu J, Wang D, Grosskreutz CL, et al. Mechanisms of retinal ganglion cell injury and defense in glaucoma[J]. Exp Eye Res, 2010, 91(1): 48-53.
[21]
黄正如,管怀进. 青光眼的视神经保护[J]. 中国实用眼科杂志200321(11):808-813.
[22]
Pease ME, McKinnon SJ, Quigley HA, et al. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma[J]. Invest Ophthalmol Vis Sci, 2000, 41(3): 764-774.
[23]
Neufeld AH. Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma[J]. Arch Ophthalmol, 1999, 117(8): 1050-1056.
[24]
江文捷,曲超. 青光眼视神经损伤机制的研究进展[J]. 医学综述201723(22):4495-4500.
[25]
周晓敏. 青光眼的分子遗传学研究进展[J]. 中华实验眼科杂志201533(3):263-269.
[26]
钟茜,段宣初,刘旭阳. 青光眼基因治疗研究进展[J]. 国际眼科杂志20177(1):157-161.
[27]
Wieshmann UC, Symms MR, Parker GJ, et al. Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumour[J]. J Neurol Neurosurg Psychiatry, 2000, 68(4): 501-503.
[28]
姚旭阳,潘英姿. 重视多模态磁共振成像在原发性青光眼中枢神经系统改变中的应用研究[J]. 中华眼科医学杂志(电子版)20166(2):49-54.
[29]
Kirk T, Jones K, Miller S, et al. Measurement of intraocular and intracranial pressure: is there a relationship?[J]. Ann Neurol, 2011, 70(2): 323-326.
[30]
Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes[J]. Invest Ophthalmol Vis Sci, 2004, 45(8): 2660-2665.
[31]
Ren R, Zhang X, Wang N, et al. Cerebrospinal fluid pressure in ocular hypertension[J]. Acta Ophthalmol, 2011, 89(2): e142-e148.
[32]
Killer HE, Miller NR, Flammer J, et al. Cerebrospinal fluid exchange in the optic nerve in normal-tension glaucoma[J]. Br J Ophthalmol, 2012, 96(4): 544-548.
[33]
Westlake WH, Morgan WH, Yu DY. A pilot study of in vivo venous pressures in the pig retinal circulation[J]. Clin Exp Ophthalmol, 2001, 29(3): 167-170.
[34]
Wostyn P, de Groot V, Audenaert K, et al. Are intracranial pressure fluctuations important in glaucoma?[J]. Med Hypotheses, 2011, 77(4): 598-600.
[35]
Dubourg J, Messerer M, Karakitsos D, et al. Individual patient data systematic review and meta-analysis of optic nerve sheath diameter ultrasonography for detecting raised intracranial pressure: protocol of the ONSD research group[J]. Syst Rev, 2013, 2(1): 62.
[36]
Kiekens S, De Groot Veva, Coeckelbergh T, et al. Continuous positive airway pressure therapy is associated with an increase in intraocular pressure in obstructive sleep apnea[J]. Invest Ophthalmol Vis Sci, 2008, 49(3): 934-940.
[37]
Wang N, Xie X, Yang D, et al. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study[J]. Ophthalmology, 2012, 119(10): 2065-2073.
[38]
Xie X, Zhang X, Fu J, et al. Noninvasive intracranial pressure estimation by orbital subarachnoid space measurement: the Beijing Intracranial and Intraocular Pressure (iCOP) study[J]. Crit Care, 2013, 17(4): R162.
[39]
王宁利,解晓斌,陈伟伟,等. 基于磁共振成像的无创颅内压及跨筛板压力差测量方法的标准与规范探讨[J]. 中华眼科杂志201450(12):936-940.
[40]
Alperin NJ, Lee SH, Loth F, et al. MR-Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study[J]. Radiology, 2000, 217(3): 877-885.
[41]
李振芝,王亮,王晓华,等. 颅脑外伤后视神经蛛网膜下腔扩张与颅内压增高的MRI相关性研究[J]. 中国中西医结合影像学杂志20053(2):104-107.
[42]
Newman WD, Hollman AS, Dutton GN, et al. Measurement of optic nerve sheath diameter by ultrasound: a means of detecting acute raised intracranial pressure in hydrocephalus[J]. Br J Ophthalmol, 2002, 86(10): 1109-1113.
[43]
Killer HE, Jaggi GP, Flammer J, et al. Cerebrospinal fluid dynamics between the intracranial and the subarachnoid space of the optic nerve. Is it always bidirectional?[J]. Brain, 2007, 130(Pt 2): 514-520.
[44]
肖春婷,吴瑜瑜. 筛板青光眼性病理及跨筛板压力差在视神经损害中研究进展[J]. 中国实用眼科杂志201533(4):332-336.
[45]
Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma[J]. Arch Ophthalmol, 2002, 120(6): 714-720.
[46]
Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma[J]. Arch Ophthalmol, 2002, 120(6): 701-13;discussion 829-830.
[47]
Jaggi GP, Miller NR, Flammer J, et al. Optic nerve sheath diameter in normal-tension glaucoma patients[J]. Br J Ophthalmol, 2012, 96(1): 53-56.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 张莲莲, 惠品晶, 丁亚芳. 颈部血管超声在粥样硬化斑块易损性评估中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 816-821.
[3] 刘冰茹, 刘皓希, 陈莹, 赖世伟, 陈蓉. 疑似乳腺癌的韧带样纤维瘤病一例[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 314-317.
[4] 叶艳娜, 叶瑞婷, 陈艳玲, 彭雯, 刘乐, 肖文秋, 黄辉, 李明深, 钟慕仪, 叶娴. 基于影像学表现和临床病理特征预测良性与交界性乳腺叶状肿瘤复发的列线图模型[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 229-237.
[5] 方心俞, 黄昌瑜, 胡洪新, 林溢铭, 陈旸, 张楠心, 张文明. 膝关节软骨下不全骨折的治疗选择与疗效分析[J]. 中华关节外科杂志(电子版), 2023, 17(04): 583-587.
[6] 董晓燕, 赵琪, 唐军, 张莉, 杨晓燕, 李姣. 奥密克戎变异株感染所致新型冠状病毒感染疾病新生儿的临床特征分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 595-603.
[7] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[8] 雷漫诗, 邓锶锶, 汪昕蓉, 黄锦彬, 向青, 熊安妮, 孟占鳌. 人工智能辅助压缩感知技术在上腹部T2WI压脂序列中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 551-556.
[9] 张馨月, 韩帅, 张舒石, 李文臣, 张舒岩. 颅内压监测技术在创伤性颅脑损伤治疗中的应用[J]. 中华神经创伤外科电子杂志, 2023, 09(04): 246-252.
[10] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[11] 钟广俊, 刘春华, 朱万森, 徐晓雷, 王兆军. MRI联合不同扫描序列在胃癌术前分期诊断及化疗效果和预后的评估[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 378-382.
[12] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[13] 冯海涛, 徐涛, 刘文阳, 孙晨, 曹尚超. 三维动脉自旋标记联合动态对比增强MRI对脑胶质瘤术后复发及放射性脑坏死诊断的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 262-265.
[14] 王志文, 郑雪梅, 张庆坤, 王海江. 自发性低颅压综合征75例临床分析[J]. 中华临床医师杂志(电子版), 2023, 17(04): 398-401.
[15] 赵暾, 徐霁华, 何有娣, 鲁明. 误诊为脑梗死且险些溶栓的急性自发微量脑出血一例[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 369-372.
阅读次数
全文


摘要