切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2018, Vol. 08 ›› Issue (01) : 44 -48. doi: 10.3877/cma.j.issn.2095-2007.2018.01.007

所属专题: 青少年近视防控 文献

综述

高度近视眼巩膜细胞外基质中相关胶原分子机制的研究进展
邢凯1, 吴宁玲2, 亢泽峰2,(), 刘健2, 朱明娟3   
  1. 1. 102200 北京市昌平区中医医院眼科
    2. 100040 北京市,中国医学科学院眼科医院眼科
    3. 810000 西宁市,青海省中医院眼科
  • 收稿日期:2018-02-03 出版日期:2018-02-28
  • 通信作者: 亢泽峰
  • 基金资助:
    国家青年科学自然基金(81303009)

Research Progress on the molecular mechanism of collagen related to the extracellular matrix of sclera of high myopia

Kai Xing1, Ningling Wu2, Zefeng Kang2,(), Jian Liu2, Mingjuan Zhu3   

  1. 1. Department of Ophthalmology, Beijing Changping Hospital of Traditional Chinese Medicine, Beijing 102200, China
    2. Department of Ophthalmology, Eye Hospital of the Chinese Academy of Medical Sciences, Beijing 100040, China
    3. Department of Ophthalmology, Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining 810000, China
  • Received:2018-02-03 Published:2018-02-28
  • Corresponding author: Zefeng Kang
  • About author:
    Corresponding author: Kang Zefeng, Email:
引用本文:

邢凯, 吴宁玲, 亢泽峰, 刘健, 朱明娟. 高度近视眼巩膜细胞外基质中相关胶原分子机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2018, 08(01): 44-48.

Kai Xing, Ningling Wu, Zefeng Kang, Jian Liu, Mingjuan Zhu. Research Progress on the molecular mechanism of collagen related to the extracellular matrix of sclera of high myopia[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2018, 08(01): 44-48.

高度近视眼是目前为止全球范围内主要的不可逆性致盲性眼部疾病之一。高度近视眼在发生和发展的过程中,眼球后部巩膜可能异常薄变或扩展。巩膜薄变、脉络膜萎缩性薄变及不同程度的眼轴延长,且伴有巩膜细胞外基质(ECM)的过度降解是高度近视眼不断发展的根本原因。近年来,随着相关研究的不断深入,国内外学者发现巩膜ECM生化特性的改变与近视眼的发展有着十分密切的关系,而胶原作为巩膜ECM的重要组成部分,其表达和积聚的改变与病理性近视眼的发展呈显著正相关的关系。目前,临床医学领域对此尚无有效的治疗方法,常用的药物及手术疗法的疗效尚未确定且毒副作用较大,并不适合在临床上进行大范围的推广和使用。本文就目前高度近视眼巩膜ECM中胶原分子机制的研究进展进行综述。

High myopia is one of the major irreversible blindness ocular diseases in the world so far. In the process of occurrence and development of high myopia, the posterior sclera of the eyeball may be abnormally thinner or expanded. Scleral degeneration, choroidal atrophy and varying degrees of ocular axis increase, and the excessive degradation of scleral extracellular matrix is the fundamental reason for the continuous development of high myopia. In recent years, with the in-depth research, the domestic and foreign scholars have found that there is a close relationship between the development of biochemical characteristics of the extracellular matrix of the scleral tissue changes and myopia, and collagen as an important component of the extracellular matrix of the scleral tissue, there is a significant positive correlation between the development of its expression and accumulation and histopathologic changes myopia. At present, there is no effective treatment method in clinical medicine. The efficacy of commonly used drugs and surgical treatment is not yet determined, and its toxic and side effects are large, so it is not suitable for wide application and promotion in clinic. In this paper, the research progress on the molecular mechanism of collagen in the extrascleral extracellular matrix of high myopia is reviewed.

[1]
Leo SW, Young TL. An evidence-based update on myopia and interventions to retard its progression[J]. Journal of Aapos, 2011, 15(2):181-189.
[2]
Jones D, Luensmann D. The prevalence and impact of high myopia[J]. Eye & Contact Lens, 2012, 38(3):188-196.
[3]
Lin HJ, Wan L, Chen WC, et al. Muscarinic acetylcholine receptor 3 is dominant in myopia progression[J]. Invest Ophthalmol Vis Sci, 2015, 53(10):6519-6525.
[4]
Zhang Q, Guo X, Xiao X, et al. A new locus for autosomal dominant high myopia maps to 4q22-q27 between D4S1578 and D4S1612[J]. Molecular Vision, 2005, 11(64-65):554-560.
[5]
张天晓,张劲松. 高度近视遗传学研究新进展[J]. 中国实用眼科杂志,2016,34(6):517-520.
[6]
Gwiazda J, Hyman L, Hussein M, et al. A Randomized Clinical Trial of Progressive Addition Lenses versus Single Vision Lenses on the Progression of Myopia in Children[J]. Invest Ophthalmol Vis Sci, 2003, 44(4):1492-1500.
[7]
Norton TT, Rada JA. Reduced extracellular matrix in mammalian sclera with induced myopia[J]. Vision Research, 1995, 35(9):1271-1281.
[8]
Meng W, Butterworth J, Malecaze F, et al. Axial length of myopia: a review of current research[J]. Ophthalmologica, 2011, 225(3):127-134.
[9]
Mcbrien NA, Jobling AI, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors[J]. Optometry & Vision Science, 2009, 86(1):307-338.
[10]
邹蕾蕾,黄莉雯,刘红. 近视与巩膜胶原关系的研究进展[J]. 中国眼耳鼻喉科杂志,2013,13(1):57-59.
[11]
Rosenthal R, Malek G, Salomon N, et al. The fibroblast growth factor receptors, FGFR-1 and FGFR-2, mediate two independent signalling pathways in human retinal pigment epithelial cells[J]. Biochem Biophys Res Commun, 2005, 337(1):241-247.
[12]
Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia[J]. Neuron, 2004, 43(4):447-468.
[13]
Lawrence MS, Azar DT. Myopia and models and mechanisms of refractive error control[J]. Ophthalmology Clinics of North America, 2002, 15(1):127-133.
[14]
Phillips JR, Khalaj M, Mcbrien NA. Induced myopia associated with increased scleral creep in chick and tree shrew eyes[J]. Invest Ophthalmol Vis Sci, 2000, 41(8):2028-2034.
[15]
龙琴,褚仁远. 巩膜细胞外基质及基质金属蛋白酶在近视发展中作用的研究进展[J]. 中华眼科杂志,2005,41(11):1047-1049.
[16]
Sabatini M, Lesur C, Thomas M, et al. Effect of inhibition of matrix metalloproteinases on cartilage loss in vitro and in a guinea pig model of osteoarthritis[J]. Arthritis & Rheumatism, 2005, 52(1):171-180.
[17]
Mapp PI, Walsh DA, Bowyer J, et al. Effects of a metalloproteinase inhibitor on osteochondral angiogenesis, chondropathy and pain behavior in a rat model of osteoarthritis[J]. Osteoarthritis Cartilage, 2010, 18(4):593-600.
[18]
Bove SE, Calcaterra SL, Brooker RM, et al. Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis[J]. Osteoarthritis & Cartilage, 2003, 11(11):821-830.
[19]
Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis[J]. Bone, 2006, 38(2):234-243.
[20]
Lethbridge CM, SW Jr, Reichle R, et al. Association of radiographic features of osteoarthritis of the knee with knee pain: data from the Baltimore Longitudinal Study of Aging[J]. Arthritis & Rheumatology, 1995, 8(3):182-188.
[21]
Guingamp C, Gegout-Pottie P, Philippe L, et al. Mono-iodoacetate-induced experimental osteoarthritis. A dose-response study of loss of mobility, morphology, and biochemistry[J]. Arthritis & Rheumatism, 1997, 40(9):1670-1679.
[22]
Abdiche YN, Malashock DS, Pons J. A structural and physico-chemical investigation of mineral/organic composites as novel components of engineered fill[J]. Imperial College London, 2005, 17(8):1326-1335.
[23]
王莹. 甘油醛后巩膜交联治疗豚鼠形觉剥夺性近视的实验研究[D]. 天津:天津医科大学,2013.
[24]
胡文政,褚仁远,张利能. 豚鼠实验性近视眼巩膜的羟脯氨酸含量改变[J]. 中华眼视光学与视觉科学杂志,2001,3(2):321-322.
[25]
JTS Jr, Norton TT. Regulation of the mechanical properties of tree shrew sclera by the visual environment[J]. Vision Research, 1999, 39(2):387-407.
[26]
Tang MD, Tan PhD, Deng ZH, et al. Insulin-like growth factor-2 antisense oligonucleotides inhibits myopia by expression blocking of retinal insulin-like growth factor-2 in guinea pig[J]. Clinical & Experimental Ophthalmology, 2012, 40(5):503-511.
[27]
Guo X, Xiao X, Li S, et al. Nonsyndromic high myopia in a Chinese family mapped to MYP1: linkage confirmation and phenotypic characterization[J]. Arch Ophthalmol, 2010, 128(11):1473-1479.
[28]
王丽娜,张丰菊. 病理性近视巩膜细胞外基质中胶原蛋白的研究进展[J]. 临床眼科杂志,2007,15(1):92-94.
[29]
Mohan M, Rao VA, Dada VK. Experimental myopia in the rabbit[J]. Experimental Eye Research, 1977, 25(1):33-38.
[30]
Lauber JK, Mcginnis J, Boyd J. Influence of miotics, Diamox and vision occluders on light-induced buphthalmos in domestic fowl[J]. Proc Soc Exp Biol Med, 1965, 120(2):572-575.
[31]
王甜. 异体脱细胞真皮基质对兔后巩膜加固后组织相容性及胶原含量变化的研究[D]. 郑州:郑州大学,2014.
[32]
左韬. 八味明目饮对形觉剥夺近视模型大鼠巩膜成纤维细胞增殖的影响[D]. 沈阳:辽宁中医药大学,2012.
[33]
Hu J, Cui D, Yang X, et al. Bone morphogenetic protein-2: a potential regulator in scleral remodeling[J]. Molecular Vision, 2008, 14(271):2373-2380.
[34]
王青. 骨形态发生蛋白在实验性近视后巩膜重塑中的作用以及高度近视相关临床治疗观察[D]. 青岛:青岛大学,2011.
[35]
Rada JA, Shelton S, Norton TT. The sclera and myopia[J]. Experimental Eye Research, 2006, 82(2):185-200.
[36]
Wallman J, Adams JI. Developmental aspects of experimental myopia in chicks: susceptibility, recovery and relation to emmetropization[J]. Vision Research, 1987, 27(7):1139-1163.
[37]
Wallman J, Velez J. Directional asymmetries of optokinetic nystagmus: developmental changes and relation to the accessory optic system and to the vestibular system.[J]. Journal of Neuroscience, 1985, 5(2):317-329.
[38]
Hughes A. The artefact of retinoscopy in the rat and rabbit eye has its origin at the retina/vitreous interface rather than in longitudinal chromatic aberration[J]. Vision Research, 1979, 19(11):1293-1294.
[39]
Iastrebtseva TA, Chuprov AD, Iua P. Indicators of general, cerebral, and regional hemodynamics in myopic schoolchildren aged 13-15 years[J]. Vestnik Oftalmologii, 1900, 118(6):12-14.
[40]
Kusakari T, Sato T, Tokoro T. Visual deprivation stimulates the exchange of the fibrous sclera into the cartilaginous sclera in chicks[J]. Experimental Eye Research, 2001, 73(4):533-546.
[41]
Rada JA, Huang Y, Rada KG. Identification of choroidal ovotransferrin as a potential ocular growth regulator[J]. Current Eye Research, 2001, 22(2):121-132.
[42]
Jobling AI, Nguyen M, Gentle A, et al. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression[J]. Journal of Biological Chemistry, 2004, 279(18):18121-18126.
[43]
Schippert R, Brand C, Schaeffel F, et al. Changes in scleral MMP-2, TIMP-2 and TGFbeta-2 mRNA expression after imposed myopic and hyperopic defocus in chickens[J]. Experimental Eye Research, 2006, 82(4):710-719.
[44]
SJ Jr, Norton TT. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery[J]. Invest Ophthalmol Vis Sci, 2005, 46(10):3484-3492.
[45]
Mcbrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia[J]. Progress in Retinal & Eye Research, 2003, 22(3):307-338.
[46]
彭鑫. 豚鼠形觉剥夺性近视眼后极部巩膜基质金属蛋白酶2及其抑制剂的表达[D]. 青岛:青岛大学,2008.
[47]
Richards AJ, Martin S, Yates JRW, et al. COL2A1 exon 2 mutations: relevance to the Stickler and Wagner syndromes[J]. Bri J Ophthalmol, 2000, 84(4):364-371.
[48]
Young TL, Ronan SM, Alvear AB, et a1.A second locus for familial high myopia maps to chromosome 12q[J].Am J Hum Genet, 1998, 63(5):1419-1424.
[49]
Young TL, Ronan SM, Drahozal LA, et al. Evidence that a locus for familial high myopia maps to chromosome 18p[J]. Am J Hum Genet, 1998, 63(1):109-119.
[50]
Phillips JR, Mcbrien NA. Pressure-induced changes in axial eye length of chick and tree shrew: significance of myofibroblasts in the sclera[J]. Invest Ophthalmol Vis Sci, 2004, 45(3):758-763.
[51]
Gentle A, Mcbrien NA. Retinoscleral control of scleral remodelling in refractive development: a role for endogenous FGF-2?[J]. Cytokine, 2002, 18(6):344-348.
[52]
Mohan M, Pakrasi S, Garg SP. The role of environmental factors and hereditary predisposition in the causation of low myopia[J]. Acta Ophthalmologica Supplement, 1988, 66(Suppl. 185):54-57.
[53]
邹蕾蕾. RGS-2与形觉剥夺性近视巩膜胶原改变的相关研究[D]. 上海:复旦大学,2013.
[54]
Rada JA, Shelton S, Norton TT. The sclera and myopia[J]. Experimental Eye Research, 2006, 82(2):185-200.
[55]
吕雅平,周浩,夏文涛,等. 紫外光-核黄素交联法对豚鼠巩膜生物力学特性的影响[J]. 中国实验动物学报,2012,20(4):44-47.
[56]
Lazuk AV, Slepova OS. Study of immune reactions to collagen in patients with myopia[J]. Vestnik Oftalmologii, 1995, 111(2):14-16.
[57]
彭海鹰,刘陇黔,夏庆杰,等. 常染色体显性遗传高度近视一家系与MYP3基因连锁分析[J]. 中华实验眼科杂志,2010,28(7):615-616.
[58]
计垣. 近视的分子遗传学研究进展[J]. 眼科新进展,2012,32(6):598-600.
[59]
Zhao YY, Zhang FJ, Zhu SQ, et al. The association of a single nucleotide polymorphism in the promoter region of the LAMA1 gene with susceptibility to Chinese high myopia[J]. Molecular Vision, 2011, 17(112):1003-1010.
[60]
Lyhne N, Sjølie AK, Kyvik KO, et al. The importance of genes and environment for ocular refraction and its determiners: a population based study among 20-45 year old twins[J]. Bri J Ophthalmol, 2001, 85(12):1470-1476.
[61]
常晋霞,张丁丁,林婴,等. 常染色体显性高度近视一家系连锁定位分析[J]. 中华医学遗传学杂志,2008,25(4):424-426.
[62]
Kinge B, Midelfart A, Jacobsen G, et al. The influence of near-work on development of myopia among university students. A three-year longitudinal study among engineering students in Norway[J]. Acta Ophthalmologica, 2000, 78(1):26-29.
[63]
Gwiazda JE, Hyman L, Norton TT, et al. Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children[J]. Invest Ophthalmol Vis Sci, 2004, 45(7):2143-2151.
[64]
Nishizaki R, Ota M, Inoko H, et al. New susceptibility locus for high myopia is linked to the uromodulin-like 1 (UMODL1) gene region on chromosome 21q22.3[J]. Eye, 2009, 23(1):222-229.
[65]
Wang IJ, Chiang TH, Shih YF, et al. The association of single nucleotide polymorphisms in the MMP-9 genes with susceptibility to acute primary angle closure glaucoma in Taiwanese patients[J]. Molecular Vision, 2006, 12(139-147):1223-1232.
[66]
Guo X, Xiao X, Li S, et al. Nonsyndromic high myopia in a Chinese family mapped to MYP1: linkage confirmation and phenotypic characterization[J]. Arch Ophthalmol, 2010, 128(11):1473-1479.
[67]
陈跃,皮敏石. Stickler综合征的研究新进展[J]. 齐齐哈尔医学院学报,2000,31(3):331-332.
[68]
Funke B, Edelmann L, Mccain N, et al. Der(22) Syndrome and Velo-Cardio-Facial Syndrome/DiGeorge Syndrome Share a 1.5-Mb Region of Overlap on Chromosome 22q11[J]. American Journal of Human Genetics, 1999, 64(3):747-758.
[69]
Shprintzen RJ, Goldberg RB, Lewin ML, et al. A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: velo-cardio-facial syndrome[J]. Cleft Palate J, 1978, 15(1):56-62.
[70]
Chen KS, Manian P, Koeuth T, et al. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome[J]. Nature Genetics, 1997, 17(2):154-163.
[71]
Halford S, Wadey R, Roberts C, et al. Isolation of a putative transcriptional regulator from the region of 22q11 deleted in DiGeorge syndrome, Shprintzen syndrome and familial congenital heart disease[J]. Human Molecular Genetics, 1993, 2(12):2099-2107.
[72]
Schinzel A, Schmid W, Fraccaro M, et al. The "Cat Eye syndrome" :Dicentric small marker chromosome probably derived from a No. 22 (Tetrasomy 22pter→q11) associated with a characteristic phenotype[J]. Human Genetics, 1981, 57(2):148-158.
[73]
Ko JM, Kim JB, Pai KS, et al. Partial Tetrasomy of Chromosome 22q11.1 Resulting from a Supernumerary Isodicentric Marker Chromosome in a Boy with Cat-eye Syndrome[J]. Journal of Korean Medical Science, 2010, 25(12):1798-1801.
[74]
Liang Y, Song Y, Zhang F, et al. Effect of a Single Nucleotide Polymorphism in the LAMA1 Promoter Region on Transcriptional Activity: Implication for Pathological Myopia[J]. Current Eye Research, 2016, 41(10):1379-1386.
[75]
Riddell N, Crewther SG. Integrated Comparison of GWAS, Transcriptome, and Proteomics Studies Highlights Similarities in the Biological Basis of Animal and Human Myopia[J]. Invest Ophthalmol Vis Sci, 2017, 58(1):660-669.
[76]
Liang H, Crewther SG, Crewther DP, et al. Structural and elemental evidence for edema in the retina, retinal pigment epithelium, and choroid during recovery from experimentally induced myopia[J]. Invest Ophthalmol Vis Sci, 2004, 45(8):2463-2474.
[77]
Ikuno Y, Maruko I, Yasuno Y, et al. Reproducibility of Retinal and Choroidal Thickness Measurements in Enhanced Depth Imaging and High-Penetration Optical Coherence Tomography[J]. Invest Ophthalmol Vis Sci, 2011, 52(8):5536-5540.
[78]
Nickla DL, Wildsoet CF, Troilo D. Diurnal rhythms in intraocular pressure, axial length, and choroidal thickness in a primate model of eye growth, the common marmoset[J]. Invest Ophthalmol Vis Sci, 2002, 43(8):2519-2528.
[1] 王子杨, 杨文利, 李栋军, 陈伟, 赵琦, 李逸丰, 崔蕊, 沈琳, 刘倩, 魏串串. 高频线阵探头对眼球壁的临床观察[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 580-584.
[2] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[3] 杨琳, 尹如铁. 外阴白色病变病因研究及治疗现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 157-165.
[4] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改��病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[5] 彭玲, 吴红, 宛仕勇, 陈斓, 叶子青, 周静. 胶原酶软膏联合水胶体敷料应用于深Ⅱ度烧伤创面治疗的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 511-516.
[6] 程宇欣, 张伟, 孔维诗, 孙瑜. 胶原蛋白敷料在创面修复中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(01): 73-77.
[7] 张洁宇, 朱文君, 高伟, 王新昇, 贺贝贝, 吴世乐. 青海地区不同海拔男性腹股沟疝患者腹壁组织Ⅰ、Ⅲ型胶原纤维表达的研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 383-389.
[8] 赛甫丁·艾比布拉, 买买提·依斯热依力, 李义亮, 王永康, 王志, 克力木·阿不都热依木. 不同材质补片修补对腹壁疝大鼠腹横筋膜组织转化生长因子-β1及Collagen合成代谢的作用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(02): 161-167.
[9] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[10] 陈惠燕, 吴瑶, 黄宗炫, 卜歆, 王庆惠, 纪辉涛, 陈银珍, 赵虎. 肾间质纤维化中胶原/DDR2 信号活化对肾成纤维细胞增殖和迁移功能影响的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 294-302.
[11] 梅杰, 徐瑞, 蔡芸, 朱一超. 纤维化对肿瘤浸润免疫细胞的影响——“硬冷肿瘤”的形成[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 257-263.
[12] 周敏, 徐阳, 胡莹, 黄先凤. 维持性血液透析患者血清β-CTX、N-MID 和PICP 与冠状动脉钙化的关系及其诊断价值[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 256-260.
[13] 马萍, 鲁静, 兰长骏. 跨上皮和去上皮快速角膜交联术治疗进展期圆锥角膜的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(04): 206-211.
[14] 刘世航, 周帅, 秦士吉, 程晓东, 丁凯, 王海程, 李超, 卢军丽, 吕红芝. 矿化胶原在骨缺损治疗中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1320-1324.
[15] 姜晓宇, 付迪, 陈雪英, 申程, 甘立军. 胶原在心肌梗死后心脏重构中的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(01): 25-30.
阅读次数
全文


摘要