切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2018, Vol. 08 ›› Issue (05) : 223 -228. doi: 10.3877/cma.j.issn.2095-2007.2018.05.005

所属专题: 文献

论著

翼状胬肉切除联合自体结膜移植术后角膜像差及眼前节参数变化的临床研究
兰小川1,(), 黄耀忠1   
  1. 1. 318000 台州,华厦眼科医院集团台州五官科医院眼科
  • 收稿日期:2018-08-27 出版日期:2018-10-28
  • 通信作者: 兰小川

Clinical research of the corneal aberration and anterior segment parameters changes after pterygium surgery

Xiaochuan Lan1,(), Yaozhong Huang1   

  1. 1. Department of Ophthalmology, Taizhou E&ENT Hospital, Huaxia Eye Hospital Group, Taizhou 318000, China
  • Received:2018-08-27 Published:2018-10-28
  • Corresponding author: Xiaochuan Lan
  • About author:
    Corresponding author: Lan Xiaochuan, Email:
引用本文:

兰小川, 黄耀忠. 翼状胬肉切除联合自体结膜移植术后角膜像差及眼前节参数变化的临床研究[J]. 中华眼科医学杂志(电子版), 2018, 08(05): 223-228.

Xiaochuan Lan, Yaozhong Huang. Clinical research of the corneal aberration and anterior segment parameters changes after pterygium surgery[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2018, 08(05): 223-228.

目的

使用Sirius三维眼前节分析系统评估翼状胬肉切除联合自体结膜移植手术后角膜像差和角膜前后表面散光度、角膜前后表面高度、角膜非球面性系数(Q值)等眼前节参数的变化。

方法

收集2017年2月至2018年3月于华厦眼科集团台州五官科医院就诊的翼状胬肉患者对50例(63只眼)的病例资料进行研究。其中,男性29例(38只眼),女性21例(25只眼);平均年龄(53.32±9.14)岁。全部患者施行翼状胬肉切除联合自体结膜移植手术。分别在术前和术后6个月,使用Sirius三维眼前节分析系统记录角膜散光度、角膜屈光力、Q值、角膜像差(包括总像差、高阶像差、彗差、球差、三叶草像差)以及角膜前后表面的高度,采用均数±标准差( ±s)进行描述,并采用配对t检验比较术前与术后的变化。

结果

患者术前角膜前后表面的散光度分别为(3.96±2.7)D和(0.40±0.15)D,术后6个月角膜前后表面的散光度分别为(1.45±1.1)D和(0.19±0.1)D,术后6个月角膜前后表面的散光度较术前均降低,其差异有统计学意义(t=6.83,9.25;P<0.05)。患者术前角膜前后表面的平均屈光力分别为(42.67±2.11)D和(-6.48±0.21)D,术后6个月角膜前后表面的平均屈光力分别为(44.70±1.90)D和(-6.60±0.20)D,术后6个月角膜前后表面的平均屈光力较术前均升高,其差异有统计学意义(t=5.36,3.28;P<0.05)。患者术前角膜前后表面的Q值分别为(-0.40±0.65)和(-0.42±0.2),术后6个月角膜前后表面的Q值分别为(-0.38±0.8)和(-0.41±0.16),术后6个月角膜前后表面的Q值与术前比较,其差异无统计学意义(t=0.15,0.68;P>0.05)。患者术前总像差为(6.29±3.18)μm,高阶像差为(2.4±1.18)μm,慧差为(0.006±0.46)μm,三叶草像差为(-0.15±0.32)μm;术后6个月总像差为(4.13±2.28)μm,高阶像差为(1.24±0.57)μm,慧差为(-0.015±0.28)μm,三叶草像差为(-0.07±0.61)μm。除球差外,术后6个月的角膜总像差、高阶像差、慧差均下降,其差异有统计学意义(t=5.96,12.15,2.02;P<0.05);三叶草像差较术前下降,但差异无统计学意义(t=-0.92;P>0.05)。患者在4 mm区域,术前角膜前后表面的高度分别为(-3.52±25.92)μm和(3.42±56.05)μm,术后6个月角膜前后表面的高度分别为(-3.46±10.37)μm和(-8.96±32.01)μm,与术前相比,术后6个月在4 mm区域角膜前后表面高度的差异无统计学意义(t=1.45,1.72;P>0.05)。患者在8 mm区域,术前角膜前后表面的高度分别为(-44.84±46.59)μm和(-157.07±117.85)μm,术后6个月角膜前后表面的高度分别为(-68.14±25.14)μm和(-198.40±66.50)μm,术后6个月在8 mm区域角膜前后表面高度分别较术前降低,其差异有统计学意义(t=6.38,12.93;P<0.05)。

结论

翼状胬肉会影响角膜表面,引起角膜像差和角膜高度的变化,手术切除翼状胬肉可以改善患者的视觉质量。翼状胬肉患者计划行屈光手术或晶状体手术,应该先进行翼状胬肉切除手术。

Objective

To assess the changes in corneal higher order aberrations and changes in the elevation of the front and back corneal surfaces using the Sirius anterior segment analysis system.

Methods

From February 2017 to March 2018, 50 patients (63 eyes) with pterygium were studied in Taizhou E&ENT Hospital, Huaxia Eye Hospital Group. Among them, there were 29 males (38 eyes) and 21 females (25 eyes), with an average age of (53.32±9.14) years. All patients underwent pterygium excision combined with autologous conjunctival transplantation. The corneal astigmatism, corneal refractive power, asphericity value, corneal aberration (including total aberration, higher order aberration, coma, spherical aberration, clover aberration) and corneal anterior and posterior surface height were recorded by Sirius three-dimensional anterior segment analysis system before and 6 months after surgery, respectively. The data of the patients were expressed by mean standard deviation(±s). Before and after surgery were compared by paired t-test.

Results

The astigmatism of anterior and posterior corneal surfaces were (3.96±2.7) D and (0.40±0.15) D respectively. The astigmatism of anterior and posterior corneal surfaces were (1.45±1.1) D and (0.19±0.1) D respectively, 6 months after surgery. The astigmatism of anterior and posterior corneal surfaces was lower than that of preoperative corneal surfaces, and the difference was statistically significant (t=6.83, 9.25; P<0.05). The average refractive power of the anterior and posterior corneal surfaces were (42.67±2.11) D and (-6.48±0.21) D, respectively. The average refractive power of the anterior and posterior corneal surfaces were (44.70±1.90) D and (-6.60±0.20) D, respectively, at 6 months after surgery. The average refractive power of the anterior and posterior corneal surfaces was higher than that of the preoperative corneal surfaces. The refractive power of anterior and posterior corneal surfaces were both rised 6 months after surgery, their differences were statistically significant (t=5.36, 3.28; P<0.05). The asphericity values of anterior and posterior corneal surfaces were (-0.40±0.65) and (-0.42±0.2). The asphericity values of anterior and posterior corneal surfaces were (-0.38±0.8) and (-0.41±0.16) respectively at 6 months after surgery. There was no significant difference in the asphericity values between anterior and posterior corneal surfaces at 6 months after surgery (t=0.15, 0.68; P>0.05). The preoperative total aberration, higher order aberration, coma aberration and clover aberration were (6.29±3.18) microns, (2.4±1.18) microns, (0.006±0.46) microns and (-0.15±0.32) microns, respectively. The total aberration, higher order aberration, coma aberration and clover aberration were (4.13±2.28) microns, (1.24±0.57) microns, (-0.015±0.28) microns and (-0.07±0.61) microns respectively at 6 months after surgery. Except spherical aberration, the total corneal aberration, higher order aberration and coma aberration decreased 6 months after surgery, and the differences were statistically significant (t=5.96, 12.15, 2.02; P<0.05). The aberration of clover decreased compared with that before surgery, but the difference was not statistically significant (t=-0.92, P>0.05). The anterior and posterior corneal surface heights were (-3.52±25.92) microns and (3.42±56.05) microns in 4 mm area before surgery, respectively. The anterior and posterior corneal surface heights were (-3.46±10.37) microns and (-8.96±32.01) microns in 6 months after surgery. The differences of anterior and posterior corneal surface heights in 4 mm area between preoperatively and 6 months after surgery were not statistically significant (t=1.45, 1.72; P>0.05). The anterior and posterior corneal surface heights were (-44.84±46.59) microns and (-157.07±117.85) microns in the 8 mm area before surgery, respectively. The anterior and posterior corneal surface heights were (-68.14±25.14) microns and (-198.40±66.50) microns in the 6 months after surgery, respectively. The anterior and posterior corneal surface heights in the 8 mm area were higher than those before surgery. The difference was significant (t=6.38, 12.93; P<0.05).

Conclusion

Pterygium affects the corneal surface and induces heights changes and aberrations that is why it should be removed to improve the visual performance of the patients. We should consider pterygial excision before any refractive surgery or lens surgery planned for those patients. aberrations that is why it should be removed to improve the visual performance of the patients. We should consider pterygial excision before any refractive surgery or lens surgery planned for those patients.

表1 术前与术后翼状胬肉患者角膜参数的比较(±s)
表2 术前与术后翼状胬肉患者角膜像差的比较(±s,μm)
表3 术前与术后翼状胬肉患者角膜前表面及后表面高度的比较(±s,mm)
[10]
Rogowska ME, Iskander DR. Age-Related Changes in Corneal Deformation Dynamics Utilizing Scheimpflug Imaging[J]. PloS one, 2015, 10(10) : e0140093.
[11]
Vanathi M, Goel S, Ganger A, et al. Corneal tomography and biomechanics in primary pterygium[J]. International Ophthalmology, 2018, 38(2) : 663-671.
[12]
Tomidokoro A, Oshika T, Amano S, et al. Quantitative analysis of regular and irregular astigmatism induced by pterygium[J]. Cornea, 1999,18(4) : 412-415.
[13]
Kheirkhah A, Safi H, Molaei S, et al. Effects of pterygium surgery on front and back corneal astigmatism[J]. Canadian Journal of Ophthalmology-journal Canadien D Ophtalmologie, 2012, 47(5) : 423-428.
[14]
Kheirkhah A, Safi H, Nazari R, et al. Effects of pterygium surgery on front and back corneal surfaces and anterior segment parameters[J]. International Ophthalmology, 2012, 32(3) : 251-257.
[15]
Bahar I, Loya N, Weinberger D, et al. Effect of pterygium surgery on corneal topography: a prospective study[J]. Cornea, 2004, 23(2) : 113-117.
[16]
Nejima R, Masuda A, Minami K, et al. Topographic changes after excision surgery of primary pterygia and the effect of pterygium size on topograpic restoration[J]. Eye & contact lens, 2015, 41(1) : 58-63.
[17]
Altan-Yaycioglu R, Kucukerdonmez C, Karalezli A, et al. Astigmatic changes following pterygium removal: Comparison of 5 different methods[J]. Indian journal of ophthalmology, 2013, 61(3) : 104-108.
[18]
Oltulu R, Demirel S, Sarac O, et al. Evaluation of corneal and anterior chamber changes following pterygium surgery using a Pentacam Scheimplug system: a prospective study[J].Seminars in ophthalmolo, 2013, 28(4) : 206-209.
[19]
Oh JY, Wee WR. The effect of pterygium surgery on contrast sensitivity and corneal topographic changes[J]. Clinical Ophthalmology, 2010, 4(1) : 315-319.
[20]
Gatinel D, Haouat M, Hoangxuan T. A review of mathematical descriptors of corneal asphericity[J]. Journal Francais D Ophtalmologie, 2002, 25(1) : 81-90.
[21]
Anera RG, Jiménez JR, Barco L, et al. Corneal asphericity on visual function after refractive surgery[J]. Optik - International Journal for Light and Electron Optics, 2002, 113(2) : 83-88.
[22]
DãAz JA, Anera RG, JimãⓒNez JR, et al. Optimum corneal asphericity of myopic eyes for refractive surgery[J]. Optica Acta International Journal of Optics, 2003, 50(12) : 1903-1915.
[23]
Jiménez JR, Anera RG, Díaz JA, et al. Corneal asphericity after refractive surgery when the Munnerlyn formula is applied[J]. J Opt Soc Am A Opt Image Sci Vis, 2004, 21(1) : 98-103.
[24]
Marcos S, Cano D, Barbero S. Increase in corneal asphericity after standard laser in situ keratomileusis for myopia is not inherent to the Munnerlyn algorithm[J]. Journal of Refractive Surgery, 2003, 19(5) : S592.
[25]
Razmjoo H, Vaezi MH, Peyman A, et al. The effect of pterygium surgery on wavefront analysis[J]. Advanced Biomedical Research, 2014, 3(1) : 196.
[26]
Gumus K, Erkilic K, Topaktas D, et al. Effect of pterygia on refractive indices, corneal topography, and ocular aberrations[J]. Cornea, 2011, 30(1) : 24-29.
[27]
Kampitak K, Leelawongtawun W, Leeamornsiri S, et al. A Comparative Study of Higher order Aberrations between Pterygium and Non-Pterygium Eyes[J]. J Med Assoc Thai, 2016, 99(Suppl 4) : S178-S181.
[28]
Pesudovs K, Figueiredo FC. Corneal first surface wavefront aberrations before and after pterygium surgery[J]. Journal of refractive surgery, 2006, 22(9) : 921-925.
[29]
Gumus K, Guven A, Altnkaynak M, et al. Comparison of Different Measurement Tools and Dimensional Parameters of Pterygium to Investigate its Impact on Refractive Indices and Ocular Aberrations[J]. Eye & contact lens, 2018, 44(2) : 118-124.
[30]
Ozgurhan EB, Kara N, Cankaya KI, et al. Corneal Wavefront Aberrations After Primary and Recurrent Pterygium Surgery[J]. Eye & contact lens, 2015, 41(6) : 378-381.
[31]
Vanathi M, Goel S, Ganger A, et al. Corneal tomography and biomechanics in primary pterygium[J]. International Ophthalmology, 2017, 38(2) : 663-671.
[32]
Minami K, Tokunaga T, Okamoto K, et al. Influence of pterygium size on corneal higher-order aberration evaluated using anterior-segment optical coherence tomography[J]. Bmc Ophthalmology, 2018, 18(1) : 166.
[33]
Kim BJ, Sun WK. Comparison of Corneal Higher-order Aberration before and after Excision of Pterygium[J]. Journal of the Korean Ophthalmological Society, 2017, 58(9) : 1023.
[34]
Gumus K, Topaktas D, Gökta A, et al. The change in ocular higher-order aberrations after pterygium excision with conjunctival autograft: a 1-year prospective clinical trial[J]. Cornea, 2012, 31(12) : 1428-1431.
[35]
Koc M, Uzel MM, Aydemir E, et al. Pterygium size and effect on intraocular lens power calculation[J]. Journal of Cataract & Refractive Surgery, 2016, 42(11) : 1620-1625.
[36]
Yoon CH, Shin IS, Kim MK. Trifocal versus Bifocal Diffractive Intraocular Lens Implantation after Cataract Surgery or Refractive Lens Exchange: a Meta-analysis[J]. Journal of Korean medical science, 2018, 33(44) : e275.
[37]
Kamiya K, Shimizu K, Iijima K, et al. Predictability of Intraocular Lens Power Calculation After Simultaneous Pterygium Excision and Cataract Surgery[J]. Medicine, 2015, 94(52) : e2232.
[38]
Bellucci R, Morselli S. Optimizing higher-order aberrations with intraocular lens technology[J]. Current Opinion in Ophthalmology, 2007, 18(1) : 67-73.
[39]
Hida WT, Motta AF, Kara-José JN, et al. Comparison between OPD-Scan results and visual outcomes of monofocal and multifocal intraocular lenses[J]. Arquivos Brasileiros De Oftalmologia, 2009, 72(4) : 526-532.
[1]
吴丹, 洪佳旭, 王飞,等. 翼状胬肉切除联合自体结膜移植术后角膜缘上皮厚度变化的傅立叶域相干光断层成像研究[J]. 中华眼科杂志,2014,50(11):833-838.
[2]
Kheirkhah A, Safi H, Nazari R, et al. Effects of pterygium surgery on front and back corneal surfaces and anterior segment parameters[J].International ophthalmology, 2012, 32(3) : 251-257.
[3]
Rezvan F, Khabazkhoob M, Hooshmand E, et al. Prevalence and risk factors of pterygium: a systematic review and meta-analysis[J].Survey of ophthalmology, 2018, 63(5) : 719-735.
[40]
俞阿勇. 角膜光学特性与人工晶状体优选[M]. 1版. 北京:人民卫生出版社,2017:42.
[4]
Jiao W, Zhou C, Wang T, et al. Prevalence and risk factors for pterygium in rural older adults in Shandong Province of China: a cross-sectional study[J]. BioMed research international, 2014 : 658648.
[5]
Song P, Chang X, Wang M, et al. Variations of pterygium prevalence by age, gender and geographic characteristics in China: A systematic review and meta-analysis[J]. PloS one, 2017, 12(3) : e0174587.
[6]
Modenese A, Gobba F. Occupational Exposure to Solar Radiation at Different Latitudes and Pterygium: A Systematic Review of the Last 10 Years of Scientific Literature[J]. International journal of environmental research and public health, 2017, 15(1) : E37.
[7]
Walsh JE, Bergmanson JP, Wallace D, et al. Quantification of the ultraviolet radiation (UVR) field in the human eye in vivo using novel instrumentation and the potential benefits of UVR blocking hydrogel contact lens[J]. British Journal of Ophthalmology, 2001, 85(9) : 1080-1085.
[8]
张明昌, 王勇. 重视翼状胬肉的基础与临床研究[J]. 中华眼科杂志,2007,43(10):868-871.
[9]
Ho T, Cheng AC, Rao SK, et al. Central corneal thickness measurements using Orbscan II, Visante, ultrasound, and Pentacam pachymetry after laser in situ keratomileusis for myopia[J]. Journal of Cataract & Refractive Surgery, 2007, 33(7) : 1177-1182.
[1] 呙誉东, 鄢雷, 张树新, 闫明. 改良上颌窦底提升术同期种植在上颌后牙区严重萎缩牙槽嵴病例应用的效果评价[J]. 中华口腔医学研究杂志(电子版), 2021, 15(06): 348-354.
[2] 张旋, 武涛, 李进莎, 李国钰, 李权, 董超, 李婷, 杨仁芳, 李云峰. 新辅助免疫治疗:dMMR/MSI-H局部进展期结直肠癌患者的“黎明之光”[J]. 中华结直肠疾病电子杂志, 2021, 10(04): 404-408.
[3] 郝壮, 马济远, 何梦梅, 李兴育, 陆新婷, 武静, 周健. 迟发性囊袋阻滞综合征临床特征、治疗方法及其疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 70-75.
[4] 张宁宁, 慕璟玉, 马晓玲, 李小龙, 王雁, 赵勇. 儿童青少年高度近视眼眼底特征的研究现状[J]. 中华眼科医学杂志(电子版), 2022, 12(04): 252-256.
[5] 张珂, 刘武. 近视眼牵引性黄斑病变相关因素的研究现状[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 380-384.
[6] 姚沁楠, 万修华. 有晶状体眼后房型人工晶状体植入术与角膜屈光手术治疗高度近视眼有效性、安全性及可预测性的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 346-352.
[7] 何海龙, 刘振宇, 周春媛, 张立平, 王进达, 万修华. 飞秒激光小切口角膜基质透镜切除术与有晶状体眼后房型人工晶状体植入术矫正高度近视眼疗效的Meta分析[J]. 中华眼科医学杂志(电子版), 2021, 11(01): 22-28.
[8] 赵鹏飞, 柳静, 徐雯, 胡雅斌, 翟长斌, 魏文斌. 术前应用人工泪液对FS-LASIK治疗高度近视眼术后干眼自觉症状和泪膜稳定性影响的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(06): 326-332.
[9] 吉祥, 张丁丁, 毛馨遥, 周仕萍, 刘慧. Wang-Koch优化眼轴SRK/T公式预测不同眼轴长度下高度近视眼合并白内障术后屈光度准确性的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(05): 281-287.
[10] 杨宇, 姜惠, 范玮. 高度近视眼眼底血流动力学的研究进展[J]. 中华眼科医学杂志(电子版), 2020, 10(03): 183-187.
[11] 牛红蕾, 张东昌, 杨璐. 多模式眼底影像技术在高度近视眼检查中的应用进展[J]. 中华眼科医学杂志(电子版), 2020, 10(02): 123-128.
[12] 孙华, 丁静文, 李冬梅. 鼻内镜下Hasner瓣切除术治疗低位鼻泪管阻塞的临床研究[J]. 中华眼科医学杂志(电子版), 2020, 10(01): 6-12.
[13] 薛喆, 裴征, 唐冲, 张昆, 张辉, 贾俊秀, 李冬, 薛涛, 刘家帮, 张清华, 王鲁宁, 关振鹏. 成人复发性髌骨脱位术前高度膝关节J形征导致术后内侧髌股韧带移植物残存松弛的分析[J]. 中华临床医师杂志(电子版), 2023, 17(02): 125-135.
[14] 刘天龙. 改良型超声乳化手术治疗高度近视合并白内障疗效观察[J]. 中华老年病研究电子杂志, 2023, 10(01): 30-33.
[15] 阿木提·司马义, 买买提·依斯热依力, 穆叶赛·尼加提, 米日古丽·热合曼, 帕提古丽·喀迪尔江, 尼菲拉·普拉提, 木克达司·依明江. 吐鲁番盆地世界人群常见慢性病流行病学调查[J]. 中华胃食管反流病电子杂志, 2020, 07(04): 197-201.
阅读次数
全文


摘要