[1] |
GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study.Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study [J]. Lancet Glob Health, 2021, 9(2): e144-e160.
|
[2] |
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045 [J]. Diabetes Res Clin Pract, 2019, 157: 107843.
|
[3] |
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis [J]. Ophthalmology, 2021, 128(11): 1580-1591.
|
[4] |
Hou X, Wang L, Zhu D, et al. Prevalence of diabetic retinopathy and vision-threatening diabetic retinopathy in adults with diabetes in China [J]. Nat Commun, 2023, 14(1): 4296.
|
[5] |
Sriprasert I, Hodis HN, Bernick B, et al. Effects of estradiol dose and serum estradiol levels on metabolic measures in early and late postmenopausal women in the Replenish trial [J]. J Womens Health (Larchmt), 2020, 29(8): 1052-1058.
|
[6] |
史晓英,何洪真,郭星,等. 雌激素与脑白质高信号[J]. 国际脑血管病杂志,2021,29(12):943-947.
|
[7] |
Obrosova IG, Kador PF. Aldose reductase-polyol inhibitors for diabetic retinopathy [J]. Curr Pharm Biotechnol, 2011, 12(3): 373-385.
|
[8] |
Dhulekar J, Simionescu A. Challenges in vascular tissue engineering for diabetic patients [J]. Acta Biomater, 2018, 70: 25-34.
|
[9] |
Oshitari T. Advanced glycation end-products and diabetic neuropathy of the retina [J]. Int J Mol Sci, 2023, 24(3): 2927.
|
[10] |
Zhang C, Gu L, Xie H, et al. Glucose transport, transporters and metabolism in diabetic retinopathy [J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(3): 166995.
|
[11] |
Dierschke SK, Miller WP, Favate JS, et al. O-GlcNAcylation alters the selection of mRNAs for translation and promotes 4E-BP1-dependent mitochondrial dysfunction in the retina [J]. J Biol Chem, 2019, 294(14): 5508-5520.
|
[12] |
Juan CA, Pérez-De-La Lastra JM, Plou FJ, et al. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies [J]. Int J Mol Sci, 2021, 22(9): 4642.
|
[13] |
Tawfik A, Sanders T, Kahook K, et al. Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase [J]. Invest Ophthalmol Vis Sci, 2009, 50(2): 878-884.
|
[14] |
Deragon MA, Mccaig WD, Truong PV, et al. Mitochondrial trafficking of MLKL, Bak/Bax, and Drp1 is mediated by RIP1 and ROS which leads to decreased mitochondrial membrane integrity during the hyperglycemic shift to necroptosis [J]. Int J Mol Sci, 2023, 24(10): 8609.
|
[15] |
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species [J]. Biochim Biophys Acta, 2016, 1863(12): 2977-2992.
|
[16] |
Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling [J]. Cell Res, 2011, 21(1): 103-115.
|
[17] |
Wang H, Zhang M, Zhou H, et al. Salusin-β mediates high glucose-induced inflammation and apoptosis in retinal capillary endothelial cells via a ROS-dependent pathway in diabetic retinopathy [J]. Diabetes Metab Syndr Obes, 2021, 14: 2291-2308.
|
[18] |
Bang E, Park C, Hwangbo H, et al. Spermidine attenuates high glucose-induced oxidative damage in retinal pigment epithelial cells by inhibiting production of ROS and NF-κB/NLRP3 inflammasome pathway [J]. Int J Mol Sci, 2023, 24(13): 10550.
|
[19] |
Lin YT, Chen LK, Jian DY, et al. Visfatin promotes monocyte adhesion by upregulating ICAM-1 and VCAM-1 expression in endothelial cells via activation of p38-pi3k-akt signaling and subsequent ROS production and IKK/NF-κB activation [J]. Cell Physiol Biochem, 2019, 52(6): 1398-1411.
|
[20] |
Liu Y, Li L, Pan N, et al. TNF-α released from retinal Müller cells aggravates retinal pigment epithelium cell apoptosis by upregulating mitophagy during diabetic retinopathy [J]. Biochem Biophys Res Commun, 2021, 561: 143-150.
|
[21] |
Zhang T, Ouyang H, Mei X, et al. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway [J]. Faseb J, 2019, 33(11): 11776-11790.
|
[22] |
Katakami N, Matsuhisa M, Kaneto H, et al. Monocyte chemoattractant protein-1 (MCP-1) gene polymorphism as a potential risk factor for diabetic retinopathy in Japanese patients with type 2 diabetes [J]. Diabetes Res Clin Pract, 2010, 89(1): e9-e12.
|
[23] |
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy [J]. Prog Retin Eye Res, 2021, 82: 100903.
|
[24] |
Lee TH, Hsieh ST, Chiang HY. Fibronectin inhibitor pUR4 attenuates tumor necrosis factor α-induced endothelial hyperpermeability by modulating β1 integrin activation [J]. J Biomed Sci, 2019, 26(1): 37.
|
[25] |
丁舟,王杨宁致,张喆,等. 糖尿病视网膜病变血-视网膜屏障的损伤机制[J]. 国际眼科纵览,2016,40(2):98-103.
|
[26] |
Yang J, Liu D, Liu Z. Integration of metabolomics and proteomics in exploring the endothelial dysfunction mechanism induced by serum exosomes from diabetic retinopathy and diabetic nephropathy patients [J]. Front Endocrinol, 2022, 13: 830466.
|
[27] |
陈平,魏雪梅,谈丽丽. 莫诺苷调控miR-483-5p表达对高糖诱导的人视网膜血管内皮细胞氧化应激和凋亡影响[J]. 中国临床解剖学杂志,2023,41(4):434-439.
|
[28] |
陈丽娜,刘焕梅. Ⅱ型糖尿病并发视网膜病变患者外周血炎症因子及血管内皮生长因子指标变化的临床研究[J]. 中国实用医刊,2019,46(8):45-48.
|
[29] |
Yuan C, Mo Y, Yang J, et al. Influences of advanced glycosylation end products on the inner blood-retinal barrier in a co-culture cell model in vitro [J]. Open Life Sci, 2020, 15(1): 619-628.
|
[30] |
Mustafi D, Saraf SS, Shang Q, et al. New developments in angiography for the diagnosis and management of diabetic retinopathy [J]. Diabetes Res Clin Pract, 2020, 167: 108361.
|
[31] |
Amoaku WM, Ghanchi F, Bailey C, et al. Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group [J]. Eye, 2020, 34(1): 1-51.
|
[32] |
Xia M, Jiao L, Wang XH, et al. Single-cell RNA sequencing reveals a unique pericyte type associated with capillary dysfunction [J]. Theranostics, 2023, 13(8): 2515-2530.
|
[33] |
Nukada H. Ischemia and diabetic neuropathy [J]. Handb Clin Neurol, 2014, 126: 469-487.
|
[34] |
Mrugacz M, Bryl A, Zorena K. Retinal vascular endothelial cell dysfunction and neuroretinal degeneration in diabetic patients [J]. J Clin Med, 2021, 10(3): 458.
|
[35] |
Baum P, Toyka KV, Blüher M, et al. Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN)-new aspects [J]. Int J Mol Sci, 2021, 22(19): 10835.
|
[36] |
Altmann C, Schmidt MHH. The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neuro-degeneration [J]. Int J Mol Sci, 2018, 19(1): 110.
|
[37] |
张新媛,王麒雲,陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J/OL]. 中华眼科医学杂志(电子版),2023,13(1):6-11.
|
[38] |
Wang Q, Qiao Z, Kang W, et al. Comparative analysis of co-culture and monoculture models in simulating diabetic neuro-vascular dysfunction: insights into diabetic retinopathy [J]. Front Endocrinol (Lausanne), 2023, 14: 1215218.
|
[39] |
Zerbini G, Maestroni S, Leocani L, et al. Topical nerve growth factor prevents neurodegenerative and vascular stages of diabetic retinopathy [J]. Front Pharmacol, 2022, 13: 1015522.
|
[40] |
Xing D, Nozell S, Chen YF, et al. Estrogen and mechanisms of vascular protection [J]. Arterioscler Thromb Vasc Biol, 2009, 29(3): 289-295.
|
[41] |
Xing D, Feng W, Miller AP, et al. Estrogen modulates TNF-alpha-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-beta activation [J]. Am J Physiol Heart Circ Physiol, 2007, 292(6): 2607-2612.
|
[42] |
Li H, Zhu C, Wang B, et al. 17β-estradiol protects the retinal nerve cells suppressing tlr2 mediated immune-inflammation and apoptosis from oxidative stress insult independent of PI3K [J]. J Mol Neurosci, 2016, 60(2): 195-204.
|
[43] |
Ikelle L, Naash MI, Al-Ubaidi MR. Modulation of SOD3 levels is detrimental to retinal homeostasis [J]. Antioxidants (Basel), 2021, 10(10): 1595.
|
[44] |
Chaychi S, Polosa A, Chemtob S, et al. Evaluating the neuroprotective effect of 17β-estradiol in rodent models of oxidative retinopathies [J]. Doc Ophthalmol, 2018, 137(3): 151-168.
|
[45] |
Hao M, Li Y, Lin W, et al. Estrogen prevents high-glucose-induced damage of retinal ganglion cells via mitochondrial pathway [J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(1): 83-90.
|
[46] |
Prokai-Tatrai K, Zaman K, Nguyen V, et al. Proteomics-based retinal target engagement analysis and retina-targeted delivery of 17β-Estradiol by the DHED prodrug for ocular neurotherapy in males [J]. Pharmaceutics, 2021, 13(9): 1392.
|
[47] |
Torres MJ, Ryan TE, Lin CT, et al. Impact of 17β-estradiol on complex Ⅰ kinetics and H(2)O(2) production in liver and skeletal muscle mitochondria [J]. J Biol Chem, 2018, 293(43): 16889-16898.
|
[48] |
Mineo C, Shaul PW. Regulation of eNOS in caveolae [J]. Adv Exp Med Biol, 2012, 729: 51-62.
|
[49] |
Parvathaneni K, Grigsby JG, Betts BS, et al. Estrogen-induced retinal endothelial cell proliferation: possible involvement of pigment epithelium-derived factor and phosphoinositide 3-kinase/mitogen-activated protein kinase pathways [J]. J Ocul Pharmacol Ther, 2013, 29(1): 27-32.
|
[50] |
Chen X, Zhang M, Jiang C, et al. Estrogen attenuates VEGF-initiated blood-retina barrier breakdown in male rats [J]. Horm Metab Res, 2011, 43(9): 614-618.
|
[51] |
Schmidl D, Schmetterer L, Garhöfer G, et al. Gender differences in ocular blood flow [J]. Curr Eye Res, 2015, 40(2): 201-212.
|
[52] |
Ma X, Bi H, Qu Y, et al. The contrasting effect of estrogen on mRNA expression of VEGF in bovine retinal vascular endothelial cells under different oxygen conditions [J]. Graefes Arch Clin Exp Ophthalmol, 2011, 249(6): 871-877.
|
[53] |
Hyder SM, Liang Y, Wu J. Estrogen regulation of thrombospondin-1 in human breast cancer cells [J]. Int J Cancer, 2009, 125(5): 1045-1053.
|
[54] |
Likhite N, Yadav V, Milliman EJ, et al. Loss of estrogen-related receptor alpha facilitates angiogenesis in endothelial cells [J]. Mol Cell Biol, 2019, 39(5): e00411-e00418.
|