[1] |
Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, Jan 2022, 183: 109-119.
|
[2] |
Teo ZL, Tham YC, Yu M, et al. Do we have enough ophthalmologists to manage vision-threatening diabetic retinopathy?[J]. Eye, 2020, 34(7): 1255-1261.
|
[3] |
Tan G, Cheung N, Simo R, et al. Diabetic macular oedema[J]. Lancet Diabetes Endocrinol, 2017, 5(2): 143-155.
|
[4] |
Wilkinson CP, Ferris FL, Klein RE, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J]. Ophthalmology, 2003, 110(9): 1677-1682.
|
[5] |
Bresnick GH, Mukamel DB, Dickinson JC, et al. A screening approach to the surveillance of patients with diabetes for the presence of vision-threatening retinopathy[J]. Ophthalmology, 2000, 107(1): 19-24.
|
[6] |
Wong TY, Sabanayagam C. Strategies to tackle the global burden of diabetic retinopathy: from epidemiology to artificial intelligence[J]. Ophthalmologica, 2020, 243(1): 9-20.
|
[7] |
Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges[J]. The Lancet Diabetes & Endocrinology, 2020, 8(4): 337-347.
|
[8] |
Gunasekeran DV, Ting DS, Tan GS, et al. Artificial intelligence for diabetic retinopathy screening, prediction and management[J]. Current opinion in ophthalmology, 2020, 31(5): 357-365.
|
[9] |
范雯,王晓玲,马枭,等. 基于超广角荧光素眼底血管造影图像行糖尿病视网膜病变分期的多模态深度学习模型研究[J]. 中华眼底病杂志,2022,38(2):139-145.
|
[10] |
段恺睿,张弘. 人工智能在眼科光相干断层扫描图像中的应用[J]. 中华实验眼科杂志,2022,40(1):83-87.
|
[11] |
Wang S, Yin Y, Cao G, et al. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning[J]. Neurocomputing, 2015, 149: 708-717.
|
[12] |
Kauppi T, Kalesnykiene V, Kämäräinen JK, et al. DIARETDB 0: Evaluation Database and Methodology for Diabetic Retinopathy Algorithms[G]Paper presented at: Proceedings of the British Machine Vision Conference 2007, University of Warwick, UK, September, 2007: 1-9.
|
[13] |
Kauppi T, Kalesnykiene V, Kamarainen JK, et al. DIARETDB1 diabetic retinopathy database and evaluation protocol [G]. Paper presented at: Proceedings of the British Machine Vision Conference 2007, University of Warwick, UK, September, 2007: 10-13.
|
[14] |
Prentašiĉ P, Lonĉariĉ S, Vatavuk Z, et al. Diabetic Retinopathy Image Database(DRiDB): A new database for diabetic retinopathy screening programs research[J]. 2013: 704-709.
|
[15] |
Decenciere E, Cazuguel G, Zhang X, et al. TeleOphta: Machine learning and image processing methods for teleophthalmology[J]. Irbm, 2013, 34(2): 196-203.
|
[16] |
Li X, Pang T, Xiong B, et al. Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification[G]. Paper presented at: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2017.
|
[17] |
Naqvi SAG, Zafar MF, Haq I. Referral system for hard exudates in eye fundus[J]. Computers in biology and medicine, 2015, 64: 217-235.
|
[18] |
Decencière E, Zhang X, Cazuguel G, et al. Feedback on a publicly distributed image database: the Messidor database[J]. Image Analysis & Stereology, 2014, 33(3): 231-234.
|
[19] |
Porwal P, Pachade S, Kamble R, et al. Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research[J]. Data, 2018, 3(3): 25.
|
[20] |
Li T, Gao Y, Wang K, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 2019, 501: 511-522.
|
[21] |
Mo J, Zhang L. Multi-level deep supervised networks for retinal vessel segmentation[J]. International journal of computer assisted radiology and surgery, 2017, 12(12): 2181-2193.
|
[22] |
Fraz MM, Remagnino P, Hoppe A, et al. An ensemble classification-based approach applied to retinal blood vessel segmentation[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(9): 2538-2548.
|
[23] |
Niemeijer M, Van Ginneken B, Cree MJ, et al. Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs[J]. IEEE transactions on medical imaging, 2009, 29(1): 185-195.
|
[24] |
Arunkumar R, Karthigaikumar P. Multi-retinal disease classification by reduced deep learning features[J]. Neural Computing and Applications, 2017, 28(2): 329-334.
|
[25] |
Hajeb Mohammad Alipour S, Rabbani H, Akhlaghi MR. Diabetic retinopathy grading by digital curvelet transform[J]. Comput Math Methods Med, 2012: 761901.
|
[26] |
Hajeb Mohammad Alipour S, Rabbani H, Akhlaghi M. A new combined method based on curvelet transform and morphological operators for automatic detection of foveal avascular zone[J]. Signal, Image and Video Processing, 2014, 8(2): 205-222.
|
[27] |
Gholami P, Roy P, Parthasarathy MK, et al. OCTID: Optical coherence tomography image database[J]. Computers & Electrical Engineering, 2020, 81: 106532.
|
[28] |
Díaz M, Novo J, Cutrín P, et al. Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images[J]. PLoS One, 2019, 14(2): e0212364.
|
[29] |
Adem K. Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks[J]. Expert Systems with Applications, 2018, 114: 289-295.
|
[30] |
Lam C, Yi D, Guo M, et al. Automated detection of diabetic retinopathy using deep learning[J]. AMIA summits on translational science proceedings, 2018: 147.
|
[31] |
Abràmoff MD, Lou Y, Erginay A, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning[J]. Investigative ophthalmology & visual science, 2016, 57(13): 5200-5206.
|
[32] |
García G, Gallardo J, Mauricio A, et al. Detection of diabetic retinopathy based on a convolutional neural network using retinal fundus images[G], 2017.
|
[33] |
Zhang W, Zhong J, Yang S, et al. Automated identification and grading system of diabetic retinopathy using deep neural networks[J]. Knowledge-Based Systems, 2019, 175: 12-25.
|
[34] |
Hamwood J, Alonso-Caneiro D, Read SA, et al. Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers[J]. Biomedical optics express, 2018, 9(7): 3049-3066.
|
[35] |
Yang D, Sun Z, Shi J, et al. A multitask deep-learning system for assessment of diabetic macular ischemia on optical coherence tomography angiography images[J]. Retina, 2022, 42(1): 184-194.
|
[36] |
Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ digital medicine, 2018, 1(1): 1-8.
|
[37] |
Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye, 2018, 32(6): 1138-1144.
|
[38] |
Ribeiro L, Oliveira CM, Neves C, et al. Screening for Diabetic Retinopathy in the Central Region of Portugal. Added Value of Automated 'Disease/No Disease'Grading[J]. Ophthalmologica, 2015, 233(2): 96-103.
|
[39] |
Xie Y, Nguyen QD, Hamzah H, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study[J]. The Lancet Digital Health, 2020, 2(5): e240-e249.
|
[40] |
Ting DSW, Cheung CYL, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. Jama, 2017, 318(22): 2211-2223.
|
[41] |
Gulshan V, Rajan RP, Widner K, et al. Performance of a deep-learning algorithm vs manual grading for detecting diabetic retinopathy in India[J]. JAMA ophthalmology, 2019, 137(9): 987-993.
|
[42] |
Ruamviboonsuk P, Krause J, Chotcomwongse P, et al. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program[J]. NPJ digital medicine, 2019, 2(1): 1-9.
|
[43] |
Li Z, Keel S, Liu C, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs[J]. Diabetes care, 2018, 41(12): 2509-2516.
|
[44] |
Bellemo V, Lim G, Rim TH, et al. Artificial intelligence screening for diabetic retinopathy: the real-world emerging application[J]. Current Diabetes Reports, 2019, 19(9): 1-12.
|
[45] |
Hansen MB, Tang H, Wang S, et al. Automated detection of diabetic retinopathy in three European populations[J]. Journal of Clinical & Experimental Ophthalmology, 2016, 7(4): 170-178.
|
[46] |
Son J, Shin JY, Kim HD, et al. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images[J]. Ophthalmology, 2020, 127(1): 85-94.
|
[47] |
Hwang DK, Yu WK, Lin TC, et al. Smartphone-based diabetic macula edema screening with an offline artificial intelligence[J]. Journal of the Chinese Medical Association, 2020, 83(12): 1102-1106.
|
[48] |
Rasti R, Allingham MJ, Mettu PS, et al. Deep learning-based single-shot prediction of differential effects of anti-VEGF treatment in patients with diabetic macular edema[J]. Biomedical Optics Express, 2020, 11(2): 1139-1152.
|
[49] |
Zhang L, Yuan M, An Z, et al. Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: A cross-sectional study of chronic diseases in central China[J]. PloS one, 2020, 15(5): e0233166.
|