| [1] |
Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis[J]. Cell, 2011, 146(6): 873-887.
|
| [2] |
Smith TL, Oubaha M, Cagnone G, et al. eNOS controls angiogenic sprouting and retinal neovascularization through the regulation of endothelial cell polarity[J]. Cell Mol Life Sci, 2021, 79(1): 37.
|
| [3] |
Adamis AP, Aiello LP, D′Amato RA. Angiogenesis and ophthalmic disease[J]. Angiogenesis, 1999, 3(1): 9-14.
|
| [4] |
Seeler JF, Sharma A, Zaluzec NJ, et al. Metal ion fluxes controlling amphibian fertilization[J]. Nat Chem, 2021, 13(7): 683-691.
|
| [5] |
Jomova K, Makova M, Alomar SY, et al. Essential metals in health and disease[J]. Chem Biol Interact, 2022, 367: 110173.
|
| [6] |
Zhang H, Mao Y, Nie Z, et al. Iron oxide nanoparticles engineered macrophage-derived exosomes for targeted pathological angiogenesis therapy[J]. ACS Nano, 2024, 18(10): 7644-7655.
|
| [7] |
Li Q, Gui X, Zhang H, et al. Role of glucose metabolism in ocular angiogenesis (Review)[J]. Mol Med Rep, 2022, 26(6): 363.
|
| [8] |
Terao R, Kaneko H. Lipid Signaling in Ocular Neovascularization[J]. Int J Mol Sci, 2020, 21(13): 4758.
|
| [9] |
Ogata T, Ashimori A, Higashijima F, et al. HIF-1α-dependent regulation of angiogenic factor expression in Müller cells by mechanical stimulation[J]. Exp Eye Res, 2024, 247: 110051.
|
| [10] |
Zhu X, Qiu C, Wang Y, et al. FGFR1 SUMOylation coordinates endothelial angiogenic signaling in angiogenesis[J]. Proc Natl Acad Sci U S A, 2022, 119(26): e2202631119.
|
| [11] |
Lan CC, Wu CS, Huang SM, et al. High-glucose environment reduces human β-defensin-2 expression in human keratinocytes: implications for poor diabetic wound healing[J]. Br J Dermatol, 2012, 166(6): 1221-1229.
|
| [12] |
Li J, Li Z, Wang K. Targeting angiogenesis in gastrointestinal tumors: strategies from vascular disruption to vascular normalization and promotion strategies angiogenesis strategies in GI tumor therapy[J]. Front Immunol, 2025, PMID: 40330478.
|
| [13] |
Elshabrawy HA, Chen Z, Volin MV, et al. The pathogenic role of angiogenesis in rheumatoid arthritis[J]. Angiogenesis, 2015, 18(4): 433-448.
|
| [14] |
Tang F, Huang K, Peng B, et al. RhoA/ROCK signaling is involved in pathological retinal neovascularization[J]. J Vasc Res, 2023, 60(4): 183-192.
|
| [15] |
Galy B, Conrad M, Muckenthaler M. Mechanisms controlling cellular and systemic iron homeostasis[J]. Nat Rev Mol Cell Biol, 2024, 25(2): 133-155.
|
| [16] |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
|
| [17] |
Liu CQ, Liu XY, Ouyang PW, et al. Ferrostatin-1 attenuates pathological angiogenesis in oxygen-induced retinopathy via inhibition of ferroptosis[J]. Exp Eye Res, 2023, PMID: 36502924.
|
| [18] |
Dai X, Yang X, Feng Y, et al. The role of vitamin K and its antagonist in the process of ferroptosis-damaged RPE-mediated CNV[J]. Cell Death Dis, 2025, 16(1): 190.
|
| [19] |
Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther, 2022, 7(1): 378.
|
| [20] |
McAuslan BR, Reilly W. Endothelial cell phagokinesis in response to specific metal ions[J]. Exp Cell Res, 1980, 130(1): 147-157.
|
| [21] |
Enzsöly A, Dunkel P, Récsán Z, et al. Preliminary studies of the effects of vascular adhesion protein-1 inhibitors on experimental corneal neovascularization[J]. J Neural Transm (Vienna), 2011, 118(7): 1065-1069.
|
| [22] |
Noda K, She H, Nakazawa T, et al. Vascular adhesion protein-1 blockade suppresses choroidal neovascularization[J]. Faseb j, 2008, 22(8): 2928-2935.
|
| [23] |
Raju KS, Alessandri G, Ziche M, et al. Ceruloplasmin, copper ions, and angiogenesis[J]. J Natl Cancer Inst, 1982, 69(5): 1183-1188.
|
| [24] |
Almulki L, Noda K, Nakao S, et al. Localization of vascular adhesion protein-1 (VAP-1) in the human eye[J]. Exp Eye Res, 2010, 90(1): 26-32.
|
| [25] |
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261.
|
| [26] |
Ning S, Lyu M, Zhu D, et al. Type-I AIE photosensitizer loaded biomimetic system boosting cuproptosis to inhibit breast cancer metastasis and rechallenge[J]. ACS Nano, 2023, 17(11): 10206-10217.
|
| [27] |
Liu WQ, Lin WR, Yan L, et al. Copper homeostasis and cuproptosis in cancer immunity and therapy[J]. Immunol Rev, 2024, 321(1): 211-227.
|
| [28] |
Zhang H, Cai C, Li Q, et al. Copper oxide nanoparticles suppress retinal angiogenesis via inducing endothelial cell cuproptosis[J]. Nanomedicine, 2024, 19(7): 597-613.
|
| [29] |
Valko M, Jomova K, Rhodes CJ, et al. Redox and non-redox-metal-induced formation of free radicals and their role in human disease[J]. Arch Toxicol, 2016, 90(1): 1-37.
|
| [30] |
Kimura T, Kambe T. The functions of metallothionein and zip and znt transporters: an overview and perspective[J]. Int J Mol Sci, 2016, 17(3): 336.
|
| [31] |
Hassan A, Elebeedy D, Matar ER, et al. Investigation of Angiogenesis and Wound Healing Potential Mechanisms of Zinc Oxide Nanorods[J]. Front Pharmacol, 2021, PMID: 34721007.
|
| [32] |
Zhu D, Su Y, Zheng Y, et al. Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39[J]. Am J Physiol Cell Physiol, 2018, 314(4): C404-C414.
|
| [33] |
Jin L, Zhang Y, Liang W, et al. Zeb1 promotes corneal neovascularization by regulation of vascular endothelial cell proliferation[J]. Commun Biol, 2020, 3(1): 349.
|
| [34] |
Xing X, Wang H, Zhang Y, et al. O-glycosylation can regulate the proliferation and migration of human retinal microvascular endothelial cells through ZFR in high glucose condition[J]. Biochem Biophys Res Commun, 2019, 512(3): 552-557.
|
| [35] |
Matikainen N, Pekkarinen T, Ryhänen EM, et al. Physiology of calcium homeostasis: an overview[J]. Endocrinol Metab Clin North Am, 2021, 50(4): 575-590.
|
| [36] |
Shah R, Amador C, Chun ST, et al. Non-canonical Wnt signaling in the eye[J]. Prog Retin Eye Res, 2023, PMID: 36443219.
|
| [37] |
Zheng S, Wang X, Zhao D, et al. Calcium homeostasis and cancer: insights from endoplasmic reticulum-centered organelle communications[J]. Trends Cell Biol, 2023, 33(4): 312-323.
|
| [38] |
Muramatsu M, Nakagawa S, Osawa T, et al. Loss of down syndrome critical region-1 mediated-hypercholesterolemia accelerates corneal opacity via pathological neovessel formation[J]. Arterioscler Thromb Vasc Biol, 2020, 40(10): 2425-2439.
|
| [39] |
Ahmad I, Balasubramanian S, Del-Debbio CB, et al. Regulation of ocular angiogenesis by Notch signaling: implications in neovascular age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2011, 52(6): 2868-2878.
|
| [40] |
Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism[J]. Cell, 2009, 137(2): 216-233.
|
| [41] |
Guarino BD, Paruchuri S, Thodeti CK. The role of TRPV4 channels in ocular function and pathologies[J]. Exp Eye Res, 2020, PMID: 32979394.
|
| [42] |
O′Leary C, McGahon MK, Ashraf S, et al. Involvement of TRPV1 and TRPV4 channels in retinal angiogenesis[J]. Invest Ophthalmol Vis Sci, 2019, 60(10): 3297-3309.
|
| [43] |
Cappelli HC, Guarino BD, Kanugula AK, et al. Transient receptor potential vanilloid 4 channel deletion regulates pathological but not developmental retinal angiogenesis[J]. J Cell Physiol, 2021, 236(5): 3770-3779.
|
| [44] |
Robitaille J, MacDonald ML, Kaykas A, et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy[J]. Nat Genet, 2002, 32(2): 326-330.
|
| [45] |
Scholz B, Korn C, Wojtarowicz J, et al. Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca(2+)/NFAT signaling[J]. Dev Cell, 2016, 36(1): 79-93.
|
| [46] |
Katz N, Rader DJ. Manganese homeostasis: from rare single-gene disorders to complex phenotypes and diseases[J]. J Clin Invest, 2019, 129(12): 5082-5085.
|
| [47] |
Winslow JWW, Limesand KH, Zhao N. The Functions of ZIP8, ZIP14, and ZnT10 in the regulation of systemic manganese homeostasis[J]. Int J Mol Sci, 2020, 21(9): 3304.
|
| [48] |
Chen P, Bornhorst J, Aschner M. Manganese metabolism in humans[J]. Front Biosci (Landmark Ed), 2018, 23(9): 1655-1679.
|
| [49] |
Sadeghi MM, Krassilnikova S, Zhang J, et al. Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo[J]. Circulation, 2004, 110(1): 84-90.
|
| [50] |
Chang CC, Dinh TK, Lee YA, et al. Nanoparticle delivery of mno(2) and antiangiogenic therapy to overcome hypoxia-driven tumor escape and suppress hepatocellular carcinoma[J]. ACS Appl Mater Interfaces, 2020, 12(40): 44407-44419.
|
| [51] |
Grujicic J, Allen AR. MnSOD mimetics in therapy: exploring their role in combating oxidative stress-related diseases[J]. Antioxidants (Basel), 2024, 13(12): 1444.
|
| [52] |
Eelen G, de-Zeeuw P, Treps L, et al. Endothelial cell metabolism[J]. Physiol Rev, 2018, 98(1): 3-58.
|
| [53] |
Eelen G, Dubois C, Cantelmo AR, et al. Role of glutamine synthetase in angiogenesis beyond glutamine synthesis[J]. Nature, 2018, 561(7721): 63-69.
|
| [54] |
Fouda AY, Xu Z, Suwanpradid J, et al. Targeting proliferative retinopathy: Arginase 1 limits vitreoretinal neovascularization and promotes angiogenic repair[J]. Cell Death Dis, 2022, 13(8): 745.
|