[1] |
万文萃,龙洋.糖尿病视网膜病变的流行病学、病因学与发病机制研究现状[J]. 眼科新进展,2022,42(9):673-679.
|
[2] |
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis [J]. Ophthalmology, 2021, 128(11): 1580-1591.
|
[3] |
Song P, Yu J, Chan KY, et al. Prevalence, risk factors and burden of diabetic retinopathy in China: A systematic review and meta-analysis[J]. J Glob Health, 2018, 8(1): e010803.
|
[4] |
Peng J, Zou H, Wang W, et al. Implementation and first-year screening results of an ocular telehealth system for diabetic retinopathy in China[J]. BMC Health Serv Res, 2011, 11: 250.
|
[5] |
Lundeen EA, Burke-Conte Z, Rein DB, et al. Prevalence of diabetic retinopathy in the US in 2021 [J]. JAMA Ophthalmol, 2023, 141(8): 747-754.
|
[6] |
Liu G, Li Y, Pan A, et al. Adherence to a healthy lifestyle in association with microvascular complications among adults with type 2 diabetes [J]. JAMA Netw Open, 2023,6(1): e2252239.
|
[7] |
Chen Z, Liu X, Hogan W, et al. Applications of artificial intelligence in drug development using real-world data[J]. Drug Discov Today, 2021, 26(5): 1256-1264.
|
[8] |
Elsharkawy M, Sharafeldeen A, Khalifa F, et al. A clinically explainable AI-based grading system for age-related macular degeneration using optical coherence tomography[J]. IEEE J Biomed Health Inform, 2024, PMID: 38231804.
|
[9] |
于楚瑶,董力,魏文斌.人工智能技术在病理性近视诊断与病情监测中的应用现状[J]. 中国医学前沿杂志(电子版),2023,15(6):15-20.
|
[10] |
Wiedeman P,惠延年. 眼科学人工智能[J]. 国际眼科杂志,2023,23(9):1417-1420.
|
[11] |
魏文斌,李赫妍,董力. 重视数字眼科在眼科学发展中所发挥的重要作用[J]. 中国医学前沿杂志(电子版),2023,15(6):4-9,83.
|
[12] |
Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis[J]. Lancet Digit Health, 2019, 1(6): e271-e297.
|
[13] |
史雪辉,张丛,魏文斌.关注糖尿病黄斑水肿的光学相干断层扫描分型及相关影像特征[J]. 中华眼科医学杂志(电子版),2021,11(1):1-7.
|
[14] |
Tsao HY, Chan PY, Su ECY. Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms[J]. BMC Bioinformatics, 2018, 19(9): 283.
|
[15] |
王倩,延艳妮,杨婧研,等.不同程度糖尿病视网膜病变患者黄斑区视网膜血流变化及影响因素:开滦眼病研究[J]. 眼科,2022,31(4):253-259.
|
[16] |
Gardner GG, Keating D, Williamson TH, et al. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool[J]. Br J Ophthalmol, 1996, 80(11): 940-944.
|
[17] |
Tang HL, Goh J, Peto T, et al. The reading of components of diabetic retinopathy: an evolutionary approach for filtering normal digital fundus imaging in screening and population based studies[J]. PLoS One, 2013, 8(7): e66730.
|
[18] |
Ganesan K, Martis RJ, Acharya UR, et al. Computer-aided diabetic retinopathy detection using trace transforms on digital fundus images[J]. Med Biol Eng Comput, 2014, 52(8): 663-672.
|
[19] |
毛明珠,黎梦宇,韦丁杨,等. 超广域SS-OCTA联合超广角激光扫描眼底成像对糖尿病视网膜病变的诊断价值[J]. 眼科新进展,2024,44(4):291-296.
|
[20] |
Lam C, Wong YL, Tang Z, et al. Performance of artificial intelligence in detecting diabetic macular edema from fundus photography and optical coherence tomography images: a systematic review and meta-analysis[J]. Diabetes Care, 2024, 47(2): 304-319.
|
[21] |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316(22): 2402-2410.
|
[22] |
Ting DSW, Cheung CYL, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J]. JAMA, 2017, 318(22): 2211-2223.
|
[23] |
Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017, 124(7): 962-969.
|
[24] |
Sedova A, Hajdu D, Datlinger F, et al. Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous AI-based screening and human-graded ultra-widefield colour fundus images[J]. Eye (Lond), 2022, 6(3): 510-516.
|
[25] |
Bhaskaranand M, Ramachandra C, Bhat S, et al. The value of automated diabetic retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes[J]. Diabetes Technol Ther, 2019, 21(11): 635-643.
|
[26] |
Zhang Y, Shi J, Peng Y, et al. Artificial intelligence-enabled screening for diabetic retinopathy: A real-world, multicenter and prospective study[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e001596.
|
[27] |
Keel S, Lee PY, Scheetz J, et al. Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study[J]. Sci Rep, 2018, 8(1): 4330.
|
[28] |
Xie Y, Nguyen QD, Hamzah H, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study[J]. Lancet Digit Health, 2020, 2(5): e240-e249.
|
[29] |
Hacisoftaoglu RE, Karakaya M, Sallam AB. Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems[J]. Pattern Recognit Lett, 2020, 135: 409-417.
|
[30] |
Sosale B, Aravind SR, Murthy H, et al. Simple, mobile-based artificial intelligence algorithm in the detection of diabetic retinopathy (SMART) study[J]. BMJ Open Diabetes Res Care, 2020, 8(1): e000892.
|
[31] |
Abràmoff MD, Lavin PT, Birch M, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ Digit Med, 2018, 1(1): 39.
|
[32] |
Raumviboonsuk P, Krause J, Chotcomwongse P, et al. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program[J]. NPJ Digit Med, 2019, 2(1): 39.
|
[33] |
Verbraak FD, Abramoff MD, Bausch GCF, et al. Diagnostic accuracy of a device for the automated detection of diabetic retinopathy in a primary care setting[J]. Diabetes Care, 2019, 42(4): 651-656.
|
[34] |
He J, Cao T, Xu F, et al. Artificial intelligence-based screening for diabetic retinopathy at community hospital[J]. Eye, 2020, 34(3): 572-576.
|
[35] |
Kanagasingam Y, Xiao D, Vignarajan J, et al. Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care[J]. JAMA Netw Open, 2018, 1(5): e182665.
|
[36] |
Joseph S, Selvaraj J, Mani I, et al. Diagnostic accuracy of artificial intelligence-based automated diabetic retinopathy screening in real-world settings: a systematic review and meta-analysis[J]. Am J Ophthalmol, 2024, 263: 214-230.
|
[37] |
Pei X, Yao X, Yang Y, et al. Efficacy of artificial intelligence-based screening for diabetic retinopathy in type 2 diabetes mellitus patients [J]. Diabetes Res Clin Pract, 2022, 184: 109190.
|
[38] |
Li Z, Keel S, Liu C, et al. An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs[J]. Diabetes Care, 2018, 41(12): 2509-2516.
|
[39] |
Ren F, Cao P, Zhao D, et al. Diabetic macular edema grading in retinal images using vector quantization and semi-supervised learning[J]. Technol Heal Care, 2018, 26(1): S389-S397.
|
[40] |
Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.
|
[41] |
Kim J, Tran L. Retinal disease classification from oct images using deep learning algorithms[C]// 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2021: 1-6.
|
[42] |
Chalakkal R, Hafiz F, Abdulla W, et al. An efficient framework for automated screening of clinically significant macular edema[J]. Comput Biol Med, 2021, 130: 104128.
|
[43] |
Cao J, You K, Jin K, et al. Prediction of response to anti-vascular endothelial growth factor treatment in diabetic macular oedema using an optical coherence tomography-based machine learning method[J]. Acta Ophthalmol, 2021, 99(1): e19-e27.
|
[44] |
Paul W, Burlina P, Mocharla R, et al. Accuracy of artificial intelligence in estimating best-corrected visual acuity from fundus photographs in eyes with diabetic macular edema[J]. JAMA Ophthalmol, 2023, 141(7): 677-685.
|
[45] |
Sabanayagam C, Xu D, Ting DSW, et al. A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations[J]. Lancet Digit Health, 2020, 2(6): e295-e302.
|
[46] |
张娟娟,赵燕,许旺,等. 基于多指标的糖尿病患者视网膜病变预测评估模型研究[J]. 中国医院统计,2023,30(6):401-407.
|
[47] |
孙笑笑,陈有信,李东辉,等. 探究人工智能在眼底疾病筛查中的应用前景[J]. 中国眼镜科技杂志,2023,34(4):118-122.
|