[1] |
Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010[J]. Br J Ophthalmol, 2012, 96 (5): 614-618.
|
[2] |
Mattick JS, Makunin IV. Non-coding RNA[J]. Hum Mol Genet, 2006, 15: 17-29.
|
[3] |
Hombach S, Kretz M. Non-coding RNAs: Classification, Biology and Functioning[J]. Adv Exp Med Biol, 2016, 937: 3-17.
|
[4] |
Garbo S, Maione R, Tripodi M, et al. Next RNA Therapeutics: The Mine of Non-Coding[J]. Int J Mol Sci, 2022, 23(13): 7471.
|
[5] |
Chen S, Zhang C, Shen L, et al. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream[J]. Pharmacol Res, 2022, 184: 106417.
|
[6] |
Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA[J]. N Engl J, 2013, 368 (18): 1685-1694.
|
[7] |
Altesha MA, Ni T, Khan A, et al. Circular RNA in cardiovascular disease[J]. J Cell Physiol, 2019, 234 (5): 5588-5600.
|
[8] |
Ma Y, Zhang P, Wang F, et al. miR-150 as a potential biomarker associated with prognosis and therapeutic outcome in colorectal cancer[J]. Gut, 2012, 61 (10): 1447-1453.
|
[9] |
Lo IJ, Hill J, Vilhjálmsson BJ, et al. Linking the association between circRNAs and Alzheimer′s disease progression by multi-tissue circular RNA characterization[J]. RNA Biol, 2020, 17 (12): 1789-1797.
|
[10] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75 (5): 843-854.
|
[11] |
Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell, 1993, 75 (5): 855-862.
|
[12] |
Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136 (2): 215-233.
|
[13] |
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets[J]. Cell, 2005, 120 (1):15-20.
|
[14] |
Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes[J]. Cell, 2012, 149 (3): 515-524.
|
[15] |
Wu C, Lin H, Wang Q, et al. Discrepant expression of microRNAs in transparent and cataractous human lenses[J]. Invest Ophthalmol Vis Sci, 2012, 53 (7): 3906-3912.
|
[16] |
Kim YJ, Lee WJ, Ko BW, et al. Investigation of MicroRNA Expression in Anterior Lens Capsules of Senile Cataract Patients and MicroRNA Differences According to the Cataract Type[J]. Transl Vis Sci Technol, 2021, 10 (2): 14.
|
[17] |
Zhang C, Hu J, Yu Y. circRNA Is a Rising Star in Researches of Ocular Diseases[J]. Front Cell Dev Biol, 2020, 8: 850.
|
[18] |
Yao P, Jiang J, Ma X, et al. miR-23a-3p regulates the proliferation and apoptosis of human lens epithelial cells by targeting Bcl-2 in an in vitro model of cataracts[J]. Exp Ther Med, 2021, 21 (5): 436.
|
[19] |
Wang X, Wang L, Sun Y, et al. MiR-22-3p inhibits fibrotic cataract through inactivation of HDAC6 and increase of α-tubulin acetylation[J]. Cell Prolif, 2020, 53 (11): e12911.
|
[20] |
De CB, Berx G. Regulatory networks defining EMT during cancer initiation and progression[J]. Nat Rev Cancer, 2013, 13 (2): 97-110.
|
[21] |
Hoffmann A, Huang Y, Suetsugu-Maki R, et al. Implication of the miR-184 and miR-204 competitive RNA network in control of mouse secondary cataract[J]. Mol Med, 2012, 18 (1): 528-538.
|
[22] |
Chen X, Xiao W, Chen W, et al. MicroRNA-26a and -26b inhibit lens fibrosis and cataract by negatively regulating Jagged-1/Notch signaling pathway[J]. Cell Death Differ, 2017, 24 (8): 1431-1442.
|
[23] |
Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA[J]. Nature, 2000, 408 (6808): 86-89.
|
[24] |
Peng CH, Liu JH, Woung LC, et al. MicroRNAs and cataracts: correlation among let-7 expression, age and the severity of lens opacity[J]. Br J Ophthalmol, 2012, 96 (5): 747-751.
|
[25] |
Dong Y, Zheng Y, Xiao J, et al. MicroRNA let-7b induces lens epithelial cell apoptosis by targeting leucine-rich repeat containing G protein-coupled receptor 4 (Lgr4) in age-related cataract[J]. Exp Eye Res, 2016, 147: 98-104.
|
[26] |
Li WC, Kuszak JR, Dunn K, et al. Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals[J]. J Cell Biol, 1995, 130 (1): 169-181.
|
[27] |
Zheng Y, Liu Y, Ge J, et al. Resveratrol protects human lens epithelial cells against H2O2-induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression[J]. Mol Vis, 2010, 16: 1467-1474.
|
[28] |
Zhang K, Yin Y, Pei C, et al. MicroRNA-124 regulates lens epithelial cell apoptosis by affecting Fas alternative splicing by targeting polypyrimidine tract-binding protein in age-related cataract[J]. Clin Exp Ophthalmol, 2021, 49 (6): 591-605.
|
[29] |
Liu Y, Li S, Liu Y, et al. MicroRNA-124 facilitates lens epithelial cell apoptosis by inhibiting SPRY2 and MMP-2[J]. Mol Med Rep, 2021, 23(5): 381.
|
[30] |
Lin C, Yang L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry[J]. Trends Cell Biol, 2018, 28 (4): 287-301.
|
[31] |
Chen LL, Zhao JC. Functional analysis of long noncoding RNAs in development and disease[J]. Adv Exp Med Biol, 2014, 825: 129-158.
|
[32] |
Huang J, Li YJ, Liu JY, et al. Identification of corneal neovascularization-related long noncoding RNAs through microarray analysis[J]. Cornea, 2015, 34 (5): 580-587.
|
[33] |
Shao J, Pan X, Yin X, et al. KCNQ1OT1 affects the progression of diabetic retinopathy by regulating miR-1470 and epidermal growth factor receptor[J]. J Cell Physiol, 2019, 234 (10): 17269-17279.
|
[34] |
Liu X, Liu C, Shan K, et al. Long Non-Coding RNA H19 Regulates Human Lens Epithelial Cells Function[J]. Cell Physiol Biochem, 2018, 50 (1): 246-260.
|
[35] |
Cheng T, Xu M, Qin B, et al. lncRNA H19 contributes to oxidative damage repair in the early age-related cataract by regulating miR-29a/TDG axis[J]. J Cell Mol Med, 2019, 23 (9): 6131-6139.
|
[36] |
Sorte K, Sune P, Bhake A, et al. Quantitative assessment of DNA damage directly in lens epithelial cells from senile cataract patients[J]. Mol Vis, 2011, 17: 1-6.
|
[37] |
Zhang M, Cheng K. Long non-coding RNA KCNQ1OT1 promotes hydrogen peroxide-induced lens epithelial cell apoptosis and oxidative stress by regulating miR-223-3p/BCL2L2 axis[J]. Exp Eye Res, 2021, 206: 108543.
|
[38] |
Li Y, Jiang Q, Cao G, et al. Repertoires of autophagy in the pathogenesis of ocular diseases[J]. Cell Physiol Biochem, 2015, 35 (5): 1663-1676.
|
[39] |
Jin X, Jin H, Shi Y, et al. Long Non-Coding RNA KCNQ1OT1 Promotes Cataractogenesis via miR-214 and Activation of the Caspase-1 Pathway[J]. Cell Physiol Biochem, 2017, 42 (1): 295-305.
|
[40] |
Liu J, Dong Y, Wen Y, et al. lncRNA KCNQ1OT1 knockdown inhibits viability, migration and epithelial-mesenchymal transition in human lens epithelial cells via miR-26a-5p/ITGAV/TGF-beta/Smad3 axis[J]. Exp Eye Res, 2020, 200: 108251.
|
[41] |
Chen B, Ma J, Li C, et al. Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelial mesenchymal transition by regulation of SMAD4 expression in lens epithelial cells[J]. Mol Med Rep, 2018, 18 (1): 16-24.
|
[42] |
Ling J, Tan K, Lu L, et al. lncRNA MIAT increases cell viability, migration, EMT and ECM production in age-related cataracts by regulating the miR-181a/CTGF/ERK signaling pathway[J]. Exp Ther Med, 2020, 20 (2): 1053-1063.
|
[43] |
Dong N. Long Noncoding RNA NEAT1 Regulates TGF-β2-Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells through the miR-34a/Snail1 and miR-204/Zeb1 Pathways[J]. Biomed Res Int, 2020: 8352579.
|
[44] |
Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: From the bench to the clinic[J]. Pharmacol Ther, 2018, 187: 31-44.
|
[45] |
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73 (11): 3852-3856.
|
[46] |
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495 (7441): 384-388.
|
[47] |
Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15 (7): 409.
|
[48] |
Pang Y, Liu Z, Han H, et al. Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation[J]. Hepatol, 2020, 73 (5): 1155-1169.
|
[49] |
Liang S, Dou S, Li W, et al. Profiling of circular RNAs in age-related cataract reveals circZNF292 as an antioxidant by sponging miR-23b-3p[J]. Aging (Albany NY), 2020, 12 (17): 17271-17287.
|
[50] |
Xu X, Gao R, Li S, et al. Circular RNA circZNF292 regulates H O -induced injury in human lens epithelial HLE-B3 cells depending on the regulation of the miR-222-3p/E2F3 axis[J]. Cell Biol Int, 2021, 45 (8): 1757-1767.
|
[51] |
Liu X, Liu B, Zhou M, et al. Circular RNA HIPK3 regulates human lens epithelial cells proliferation and apoptosis by targeting the miR-193a/CRYAA axis[J]. Biochem Biophys Res Commun, 2018, 503 (4): 2277-2285.
|
[52] |
Cui G, Wang L, Huang W. Circular RNA HIPK3 regulates human lens epithelial cell dysfunction by targeting the miR-221-3p/PI3K/AKT pathway in age-related cataract[J]. Exp Eye Res, 2020, 198: 108128.
|
[53] |
Liegl R, Wertheimer C, Kernt M, et al. Attenuation of human lens epithelial cell spreading, migration and contraction via downregulation of the PI3K/Akt pathway[J]. Graefes Arch Clin Exp Ophthalmol, 2014, 252 (2): 285-292.
|
[54] |
Liu Y, Chen T, Zheng G. Exosome-transmitted circ-CARD6 facilitates posterior capsule opacification development by miR-31/FGF7 axis[J]. Exp Eye Res, 2021, 207: 108572.
|
[55] |
Zhou C, Huang X, Li X, et al. Circular RNA erythrocyte membrane protein band 4.1 assuages ultraviolet irradiation-induced apoptosis of lens epithelial cells by stimulating 5′-bisphosphate nucleotidase 1 in a miR-24-3p-dependent manner[J]. Bioengineered, 2021, 12 (1): 8953-8964.
|