切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 236 -240. doi: 10.3877/cma.j.issn.2095-2007.2023.04.009

综述

角膜生物力学评估参数的应用进展
崔梦凡, 贺瑞(), 李晓娜, 陈维毅, 宋耀文   
  1. 030001 太原,山西医科大学第一临床医学院2020级硕士研究生
    030002 太原,山西省眼科医院准分子激光科
    030024 太原理工大学生物医学工程学院
  • 收稿日期:2022-11-29 出版日期:2023-08-28
  • 通信作者: 贺瑞
  • 基金资助:
    国家自然科学基金项目(12072218)

The appilication progress of evaluation parameters for the corneal biomechanics

Mengfan Cui, Rui He(), Xiaona Li, Weiyi Chen, Yaowen Song   

  1. Master′s degree 2020, the First Clinical Medical College of Shanxi Medical University, Taiyuan 030001, China
    Excimer Laser Department, Shanxi Eye Hospital, Taiyuan 030002, China
    College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2022-11-29 Published:2023-08-28
  • Corresponding author: Rui He
引用本文:

崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.

Mengfan Cui, Rui He, Xiaona Li, Weiyi Chen, Yaowen Song. The appilication progress of evaluation parameters for the corneal biomechanics[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(04): 236-240.

角膜生物力学评估可用于圆锥角膜筛查、圆锥角膜诊断、角膜屈光手术术前、屈光术式的选择及生物力学校正眼压的辅助青光眼治疗等。本文中笔者重点阐述Corvis生物力学指数、角膜地形图联合生物力学指数以及应力-应变指数等临床上常用角膜生物力学评估参数的应用进展。

The biomechanical assessment of the cornea can be used for keratoconus screening, its diagnosis, preoperative evaluation of corneal refractive surgery, selection of auxiliary surgical modalities, and measurement of the biomechanically-corrected intra-ocular pressure in the treatment of glaucoma. The progress on the appilication of corneal biomechanical assessment parameters commonly used in clinical practice, including Corvis biomechanical index, tomographic-biomechanical index and stress-strain index were focused in this paper.

表1 角膜地形图联合生物力学指数正常角膜临界值的文献汇总
[1]
Piňero DP, Alcón N. Corneal biomechanics: a review[J]. Clin Exp Optom, 2015, 98(2): 107-116.
[2]
Ambrósio R , Correia FF, Lopes B, et al. Corneal biomechanics in ectatic diseases: refractive surgery implications[J]. Open Ophthalmol J, 2017, 11: 176-193.
[3]
Chen KJ, Joda A, Vinciguerra R, et al. Clinical evaluation of a new correction algorithm for dynamic Scheimpflug analyzer tonometry before and after laser in situ keratomileusis and small-incision lenticule extraction[J]. J Cataract Refract Surg, 2018, 44(5): 581-588.
[4]
SalomãoMQ, Hoffling-Lima A, Lopes BT, et al. Recent developments in keratoconus diagnosis[J]. 2018, 13(6): 329-341.
[5]
Vellara HR, Patel DV. Biomechanical properties of the keratoconic cornea: a review[J]. Clin Exp Optom, 2015, 98(1): 31-38.
[6]
Zhang M, Zhang F, Li Y, et al. Early diagnosis of keratoconus in Chinese myopic eyes by combining Corvis ST with pentacam[J]. Current Eye Res, 2020, 45(2): 118-123.
[7]
Ortiz D, Piňero D, Shabayek MH, et al. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes[J]. J Cataract Refract Surg, 2007, 33(8): 1371-1375.
[8]
Ramirez-Garcia MA, Sloan SR, Nidenberg B, et al. Depth-dependent out-of-plane young's modulus of the human cornea[J]. Curr eye research, 2018, 43(5): 595-604.
[9]
De-Stefano VS, Dupps WJ. Biomechanical diagnostics of the cornea[J]. Int Ophthalmol Clin, 2017, 57(3): 75-86.
[10]
Eliasy A, Chen KJ, Vinciguerra R, et al. Determination of corneal biomechanical behavior invivo for healthy eyes using CorVis ST tonometry: Stress-Strain Index[J]. Front Bioeng Biotechnol, 2019, 7: 105.
[11]
Kaushik S, Pandav SS. Ocular response analyzer[J]. J Curr Glaucoma Pract, 2012, 6(1): 17-19.
[12]
Sedaghat MR, Momeni-Moghaddam H, Heravian J, et al. Detection ability of corneal biomechanical parameters for early diagnosis of ectasia[J]. Eye (London, England), 2023, 37(8): 1665-1672.
[13]
Kaufmann C, Bachmann LM, Thiel MA. Intraocular pressure measurements using dynamic contour tonometry after laser in situ keratomileusis[J]. Invest Ophth Vis Sci, 2003, 44(9): 3790-3794.
[14]
Qian CX, Duperré J, Hassanaly S, et al. Pre versus post-dilation changes in intraocular pressure: their clinical significance[J]. Can J Ophthalmol, 2012, 47(5): 448-452.
[15]
Pepose JS, Feigenbaum SK, Qazi MA, et al. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry[J]. Am J Ophthal-mol, 2007, 143(1): 39-47.
[16]
Tsai AS, Loon SC. Intraocular pressure assessment after laser in situ keratomileusis: a review[J]. Clin Exp Optom, 2012, 40(3): 295-304.
[17]
Eliasy A, Chen KJ, Vinciguerra R, et al. Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST[J]. Exp Eye Res, 2018, 175: 98-102.
[18]
Elsheikh A, Geraghty B, Alhasso D, et al. Regional variation in the biomechanical properties of the human sclera[J]. Exp Eye Res, 2010, 90(5): 624-633.
[19]
Joda AA, Shervin MM, Kook D, et al. Development and validation of a correction equation for Corvis tonometry[J]. Comput Methods Biomech Biomed Engin, 2016, 19(9): 943-953.
[20]
Fernández J, Rodríguez-Vallejo M, Martínez J, et al. New parameters for evaluating corneal biomechanics and intraocular pressure after small-incision lenticule extraction by Scheimpflug-based dynamic tonometry[J]. J Cataract Refract Surg, 2017, 43(6): 803-811.
[21]
Liu G, Rong H, Pei R, et al. Age distribution and associated factors of cornea biomechanical parameter stress-strain index in Chinese healthy population[J]. BMC Ophthalmol 2020, 20(1): 436.
[22]
Vinciguerra R, Ambrósio R, Roberts CJ, et al. Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities[J]. J Refract Surg, 2017, 33(6): 399-407.
[23]
Vinciguerra R, Ambrósio R, Elsheikh A, et al. Detection of keratoconus with a new biomechanical index[J]. J Refract Surg, 2016, 32(12): 803-810.
[24]
Wang YM, Chan TCY, Yu M, et al. Comparison of corneal dynamic and tomographic analysis in normal, forme fruste keratoconic, and keratoconic eyes[J]. J Refract Surg, 2017, 33(9): 632-638.
[25]
Chan TC, Wang YM, Yu M, et al. Comparison of corneal dynamic parameters and tomographic measurements using Scheimpflug imaging in keratoconus[J]. Br J Ophthalmol, 2018, 102(1): 42-47.
[26]
Steinberg J, Amirabadi NE, Frings A, et al. Keratoconus screening with dynamic biomechanical in vivo scheimpflug analyses: a proof-of-concept study[J]. J Refract Surg, 2017, 33(11): 773-778.
[27]
Augustin VA, Son HS, Baur I, et al. Detecting subclinical keratoconus by biomechanical analysis in tomographically regular keratoconus fellow eyes[J]. Eur J Ophthalmol, 2021, PMID: 34841930.
[28]
Ambrósio R, Lopes BT, Faria-Correia F, et al. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing Ectasia detection[J]. J Refract Surg, 2017, 33(7): 434-443.
[29]
Ferreira-Mendes J, Lopes BT, Faria-Correia F, et al. Enhanced Ectasia detection using corneal tomography and biomechanics[J]. Am J Ophthalmol, 2019, 197: 7-16.
[30]
Fernández J, Rodríguez-Vallejo M. Tomographic and biomechanical index (TBI) for screening in laser refractive surgery[J]. J Refract Surg, 2019, 35(6): 398.
[31]
Kataria P, Padmanabhan P, Gopalakrishnan A, et al. Accuracy of Scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population[J]. J Cataract Refract Surg, 2019, 45(3): 328-336.
[32]
Steinberg J, Siebert M, Katz T, et al. Tomographic and biomechanical scheimpflug imaging for keratoconus characteri-zation: a validation of current indices[J]. J Refract Surg, 2018, 34(12): 840-847.
[33]
Xu H, Zong Y, Zhai R, et al. Intereye and intraeye asymmetry analysis of retinal microvascular and neural structure parameters for diagnosis of primary open-angle glaucoma[J]. Eye (London, England), 2019, 33(10): 1596-1605.
[34]
Elsheikh A, Geraghty B, Rama P, et al. Characterization of age-related variation in corneal biomechanical properties[J]. J R Soc Interface, 2010, 7(51): 1475-1485.
[35]
Clayson K, Pan X, Pavlatos E, et al. Corneoscleral stiffening increases IOP spike magnitudes during rapid microvolumetric change in the eye[J]. Exp Eye Res, 2017, 165: 29-34.
[36]
Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis[J]. J Cataract Refract Surg, 2005, 31(1): 146-155.
[37]
Ye Y, Li Y, Zhu Z, et al. Effect of mydriasis-caused intraocular pressure changes on corneal biomechanical metrics[J]. Front Bioeng Biotechnol, 2021, 9: 751628.
[38]
Maklad O, Eliasy A, Chen KJ, et al. Fluid-structure interaction based algorithms for iop and corneal material behavior[J]. Front Bioeng Biotechnol, 2020, 8: 970.
[39]
Han F, Li M, Wei P, et al. Effect of biomechanical properties on myopia: a study of new corneal biomechanical parameters[J]. BMC Ophthalmol 2020, 20(1): 459.
[40]
Zhang H, Eliasy A, Lopes B, et al. Stress-strain index map: a new way to represent corneal material stiffness[J]. Front Bioeng Biotechnol, 2021, 9: 640434.
[41]
Liu Y, Zhang Y, Chen Y. Application of a scheimpflug-based biomechanical analyser and tomography in the early detection of subclinical keratoconus in chinese patients[J]. BMC Ophthalmol 2021, 21(1): 339.
[42]
Daxer A, Misof K, Grabner B, et al. Collagen fibrils in the human corneal stroma: structure and aging[J]. Invest Ophth Vis Sci, 1998, 39(3): 644-648.
[43]
Blackburn BJ, Jenkins MW, Rollins AM, et al. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking[J]. Front Bioeng Biotechnol, 2019, 7: 66.
[44]
He M, Ding H, He H, et al. Corneal biomechanical properties in healthy children measured by corneal visualization scheimpflug technology[J]. BMC Ophthalmol, 2017, 17(1): 70.
[45]
Tubtimthong A, Chansangpetch S, Ratprasatporn N, et al. Comparison of corneal biomechanical properties among axial myopic, nonaxial myopic, and nonmyopic eyes[J]. BioMed Res Int, 2020, PMID: 8618615.
[46]
Jonas JB, Xu L. Histological changes of high axial myopia[J]. Eye (London, England), 2014, 28(2): 113-117.
[47]
Harper AR, Summers JA. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development[J]. Exp Eye Res, 2015, 133: 100-111.
[48]
Morgan SR, Dooley EP, Hocking PM, et al. An X-ray scattering study into the structural basis of corneal refractive function in an avian model[J]. Biophys J, 2013, 104(12): 2586-2594.
[49]
Chang SW, Tsai IL, Hu FR, et al. The cornea in young myopic adults[J]. Br J Ophthalmol, 2001, 85(8): 916-920.
[50]
Ohno-Matsui K, Akiba M, Ishibashi T, et al. Observations of vascular structures within and posterior to sclera in eyes with pathologic myopia by swept-source optical coherence tomography[J]. Invest Ophth Vis Sci, 2012, 53(11): 7290-7298.
[51]
Chua J, Nongpiur ME, Zhao W, et al. Comparison of corneal biomechanical properties between Indian and Chinese adults[J]. Ophthalmology, 2017, 124(9): 1271-1279.
[52]
Vinciguerra R, Herber R, Wang Y, et al. Corneal biomechanics differences between Chinese and Caucasian healthy subjects[J]. Front Med, 2022, 9: 834663.
[1] 刘佳, 贺瑞, 李晓娜. 断层扫描生物力学指数应用于屈光手术术前早期圆锥角膜筛查的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 341-346.
[2] 刘佳, 贺瑞, 李晓娜, 高妍. 角膜屈光手术术前筛查早期圆锥角膜的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 375-379.
阅读次数
全文


摘要