[1] |
Assi L, Chamseddine F, Ibrahim P, et al. A global assessment of eye health and quality of life: a systematic review of systematic reviews [J]. JAMA Ophthalmol, 2021, 139(5): 526-541.
|
[2] |
国家重点研发计划YFC2008200项目组,中华医学会眼科学分会眼视光学组,中国医师协会眼科医师分会眼视光专业委员会. 中国低视力康复临床指南(2021) [J]. 中华眼视光学与视觉科学杂志,2021,23(3):161-170.
|
[3] |
Baroncelli L, Lunghi C. Neuroplasticity of the visual cortex: in sickness and in health [J]. Exp Neurol, 2021, 335: 113515.
|
[4] |
Strettoi E, Di-Marco B, Orsini N, et al. Retinal plasticity [J]. Int J Mol Sci, 2022, 23(3): 1138.
|
[5] |
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, et al. Structural plasticity of the hippocampus in neurodegenerative diseases [J]. Int J Mol Sci, 2022, 23(6): 3349.
|
[6] |
Tailor VK, Schwarzkopf DS, Dahlmann-Noor AH. Neuroplasticity and amblyopia: vision at the balance point [J]. Curr Opin Neurol, 2017, 30(1): 74-83.
|
[7] |
Castaldi E, Lunghi C, Morrone MC. Neuroplasticity in adult human visual cortex [J]. Neurosci Biobehav Rev, 2020, 112: 542-552.
|
[8] |
Groleau M, Nazari-Ahangarkolaee M, Vanni MP, et al. Mesoscopic cortical network reorganization during recovery of optic nerve injury in GCaMP6s mice [J]. Sci Rep, 2020, 10(1): 21472.
|
[9] |
Yamahachi H, Marik SA, McManus JNJ, et al. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex [J]. Neuron, 2009, 64(5): 719-729.
|
[10] |
Keck T, Mrsic-Flogel TD, Vaz-Afonso M, et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex [J]. Nat Neurosci, 2008, 11(10): 1162-1167.
|
[11] |
Sabel BA, Kasten E. Restoration of vision by training of residual functions [J]. Curr Opin Ophthalmol, 2000, 11(6): 430-436.
|
[12] |
Sabel BA, Henrich-Noack P, Fedorov A, et al. Vision restoration after brain and retina damage: the " residual vision activation theory" [J]. Prog Brain Res, 2011, 192(8): 199-262.
|
[13] |
Sabel BA, Flammer J, Merabet LB. Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness——a review [J]. Restor Neurol Neurosci, 2018, 36(6): 767-791.
|
[14] |
Ricciardi E, Pietrini P. New light from the dark: what blindness can teach us about brain function [J]. Curr Opin Neurol, 2011, 24(4): 357-363.
|
[15] |
Merabet LB, Pascual-Leone A. Neural reorganization following sensory loss: the opportunity of change [J]. Nat Rev Neurosci, 2010, 11(1): 44-52.
|
[16] |
Fine I, Park J-M. Blindness and human brain plasticity [J]. Annu Rev Vis Sci, 2018, 4: 337-356.
|
[17] |
Collignon O, Dormal G, Albouy G, et al. Impact of blindness onset on the functional organization and the connectivity of the occipital cortex [J]. Brain, 2013, 136(9): 2769-2783.
|
[18] |
Kujala T, Alho K, Näätänen R. Cross-modal reorganization of human cortical functions [J]. Trends Neurosci, 2000, 23(3): 115-120.
|
[19] |
López-Bendito G, Aníbal-Martínez M, Martini FJ. Cross-modal plasticity in brains deprived of visual input before vision [J]. Annu Rev Neurosci, 2022, 45: 471-489.
|
[20] |
Kanjlia S, Loiotile RE, Harhen N, et al. Visual cortices of congenitally blind adults are sensitive to response selection demands in a go/no-go task [J]. NeuroImage, 2021, 236(11): 118023.
|
[21] |
Masuda Y, Takemura H, Terao M, et al. V1 Projection zone signals in human macular degeneration depend on task despite absence of visual stimulus [J]. Curr Biol, 2021, 31(2): 406-412.
|
[22] |
Legge GE, Chung STL. Low Vision and Plasticity: Implications for Rehabilitation [J]. Annu Rev Vis Sci, 2016, 2: 321-343.
|
[23] |
Bottari D, Kekunnaya R, Hense M, et al. Motion processing after sight restoration: No competition between visual recovery and auditory compensation [J]. NeuroImage, 2018, 167: 284-296.
|
[24] |
Mowad TG, Willett AE, Mahmoudian M, et al. Compensatory cross-modal plasticity persists after sight restoration [J]. Front Neurosci, 2020, 14: 291.
|
[25] |
Baker CI, Peli E, Knouf N, et al. Reorganization of visual processing in macular degeneration [J]. J Neurosci, 2005, 25(3): 614-618.
|
[26] |
Chung STL. Cortical reorganization after long-term adaptation to retinal lesions in humans [J]. J Neurosci, 2013, 33(46): 18080-18086.
|
[27] |
Burnat K, Hu TT, Kossut M, et al. Plasticity beyond V1: reinforcement of motion perception upon binocular central retinal lesions in adulthood [J]. J Neurosci, 2017, 37(37): 8989-8999.
|
[28] |
Keliris GA, Shao Y, Schmid MC, et al. Macaque area V2/V3 reorganization following homonymous retinal lesions [J]. Front Neurosci, 2022, 16: 757091.
|
[29] |
Liu T, Cheung SH, Schuchard RA, et al. Incomplete cortical reorganization in macular degeneration [J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6826-6834.
|
[30] |
Brown HDH, Gouws AD, Vernon RJW, et al. Assessing functional reorganization in visual cortex with simulated retinal lesions [J]. Brain Struct Funct, 2021, 226(9): 2855-2867.
|
[31] |
Chung STL. The Glenn A. Fry Award Lecture 2012: Plasticity of the visual system following central vision loss [J]. Optom Vis Sci, 2013, 90(6): 520-529.
|
[32] |
Schumacher EH, Jacko JA, Primo SA, et al. Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration [J]. Restor Neurol Neurosci, 2008, 26(4-5): 391-402.
|
[33] |
Crossland MD, Culham LE, Kabanarou SA, et al. Preferred retinal locus development in patients with macular disease [J]. Ophthalmology, 2005, 112(9): 1579-1585.
|
[34] |
Bernard JB, Chung STL. Visual acuity is not the best at the preferred retinal locus in people with macular disease [J]. Optom Vis Sci, 2018, 95(9): 829-836.
|
[35] |
Li S, Deng X, Chen Q, et al. Characteristics of preferred retinal locus in eyes with central vision loss secondary to different macular lesions [J]. Semin Ophthalmol, 2021, 36(8): 734-741.
|
[36] |
Erbezci M, Ozturk T. Preferred retinal locus locations in age-related macular degeneration[J]. Retina, 2018, 38(12): 2372-2378.
|
[37] |
Vingolo EM, Napolitano G, Fragiotta S. Microperimetric biofeedback training: fundamentals, strategies and perspectives [J]. Front Biosci, 2018, 10(1): 48-64.
|
[38] |
Li S, Deng X, Zhang J. An overview of preferred retinal locus and its application in biofeedback training for low-vision rehabilitation [J]. Semin Ophthalmol, 2022, 37(2): 142-152.
|
[39] |
Melillo P, Prinster A, Di-Iorio V, et al. Biofeedback rehabilitation and visual cortex response in stargardt′s disease: a randomized controlled trial [J]. Transl Vis Sci Technol, 2020, 9(6): 6.
|
[40] |
Qian T, Xu X, Liu X, et al. Efficacy of MP-3 microperimeter biofeedback fixation training for low vision rehabilitation in patients with maculopathy [J]. BMC Ophthalmol, 2022, 22(1): 197.
|
[41] |
Sahli E, Altinbay D, Bingol-Kiziltunc P, et al. Effectiveness of low vision rehabilitation using microperimetric acoustic biofeedback training in patients with central scotoma [J]. Curr Eye Res, 2021, 46(5): 731-738.
|
[42] |
Ratra D, Gopalakrishnan S, Dalan D, et al. Visual rehabilitation using microperimetric acoustic biofeedback training in individuals with central scotoma [J]. Clin Exp Optom, 2019, 102(2): 172-179.
|
[43] |
Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases [J]. Neuropharmacology, 2013, 64: 579-587.
|
[44] |
El-Nahas N, Elbokl AM, Abd-Eldayem EH, et al. Navigated perilesional transcranial magnetic stimulation can improve post-stroke visual field defect: A double-blind sham-controlled study [J]. Restor Neurol Neurosci, 2021, 39(3): 199-207.
|
[45] |
Schatz A, Pach J, Gosheva M, et al. Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled follow-up study over 1 year [J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 257-269.
|
[46] |
Liu J, Tong K, Lin Y, et al. Effectiveness of microcurrent stimulation in preserving retinal function of blind leading retinal degeneration and optic neuropathy: a systematic review [J]. Neuromodulation, 2021, 24(6): 992-1002.
|
[47] |
Sabel BA, Thut G, Haueisen J, et al. Vision modulation, plasticity and restoration using non-invasive brain stimulation——An IFCN-sponsored review [J]. Clin Neurophysiol, 2020, 131(4): 887-911.
|
[48] |
Räty S, Borrmann C, Granata G, et al. Non-invasive electrical brain stimulation for vision restoration after stroke: An exploratory randomized trial (REVIS) [J]. Restor Neurol Neurosci, 2021, 39(3): 221-235.
|
[49] |
张琦琪,吴毅. 丰富环境在缺血性脑损伤康复中的应用研究进展 [J]. 中华物理医学与康复杂志,2022,44(6):551-555.
|
[50] |
Alwis DS, Rajan R. Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury [J]. Front Syst Neurosci, 2014, PMID: 25228861.
|
[51] |
Dieguez HH, Calanni JS, Romeo HE, et al. Enriched environment and visual stimuli protect the retinal pigment epithelium and photoreceptors in a mouse model of non-exudative age-related macular degeneration [J]. Cell Death Dis, 2021, 12(12): 1128.
|
[52] |
Fleitas MFG, Aranda ML, Diéguez HH, et al. The " use it or lose it" dogma in the retina: visual stimulation promotes protection against retinal ischemia [J]. Mol Neurobiol, 2020, 57(1): 435-449.
|
[53] |
Aranda ML, González Fleitas MF, Dieguez HH, et al. Therapeutic benefit of environmental enrichment on optic neuritis [J]. Neuropharmacology, 2019, 145(Pt A): 87-98.
|
[54] |
González-Fleitas MF, Dorfman D, Rosenstein RE. A novel viewpoint in glaucoma therapeutics: enriched environment [J]. Neural Regen Res, 2022, 17(7): 1431-1439.
|
[55] |
Barone I, Novelli E, Piano I, et al. Environmental enrichment extends photoreceptor survival and visual function in a mouse model of retinitis pigmentosa [J]. PLoS One, 2012, 7(11): e50726.
|
[56] |
Dorfman D, Aranda ML, Rosenstein RE. Enriched environment protects the optic nerve from early diabetes-induced damage in adult rats [J]. PLoS One, 2015, 10(8): e0136637.
|
[57] |
Abuleil D, Thompson B, Dalton K. Aerobic exercise and human visual cortex neuroplasticity: a narrative review [J]. Neural Plasticity, 2022, PMID: 35915651.
|
[58] |
崔博豪,颜华. 运动与年龄相关性黄斑变性的研究进展 [J]. 中华眼科杂志,2022,58(12):1079-1083.
|