切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 221 -225. doi: 10.3877/cma.j.issn.2095-2007.2023.04.006

综述

视觉重塑在视觉损伤中的原理及应用进展
周杰, 陈倩茵, 张静琳()   
  1. 410015 长沙,中南大学爱尔眼科学院2020级眼科硕士研究生
    510030 广州爱尔眼科医院眼底科
    410015 长沙,中南大学爱尔眼科学院2020级眼科硕士研究生;510030 广州爱尔眼科医院眼底科
  • 收稿日期:2022-12-07 出版日期:2023-08-28
  • 通信作者: 张静琳
  • 基金资助:
    广东省医学科学技术研究基金项目(B2023251); 广州市科技计划项目(202201020075)

The principle and application progress of visual cortex plasticity in visual impairment

Jie Zhou, Qianyin Chen, Jinglin Zhang()   

  1. Master′s degree 2020(majoring in ophthalmology), Aier School of Ophthalmology, Central South University, Changsha 410015, China
    Department of Fundus Disease, Guangzhou Aier Hospital, Guangzhou 510030, China
    Master′s degree 2020(majoring in ophthalmology), Aier School of Ophthalmology, Central South University, Changsha 410015, China; Department of Fundus Disease, Guangzhou Aier Hospital, Guangzhou 510030, China
  • Received:2022-12-07 Published:2023-08-28
  • Corresponding author: Jinglin Zhang
引用本文:

周杰, 陈倩茵, 张静琳. 视觉重塑在视觉损伤中的原理及应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 221-225.

Jie Zhou, Qianyin Chen, Jinglin Zhang. The principle and application progress of visual cortex plasticity in visual impairment[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(04): 221-225.

中重度视觉损伤会严重影响患者的生活质量,但目前又缺乏有效的治疗手段。近年来,有研究结果表明,视觉损伤后大脑会自发通过皮质重塑调节自身结构与功能,这提示通过视觉重塑恢复视觉具有现实可能性。对视觉损伤人群进行微视野生物反馈训练、非侵入性脑刺激及丰富环境等疗法可能促进视觉重塑。然而,视觉功能重塑的原理尚不明确,由此展开的应用仍有诸多限制。本文中笔者就视觉重塑的原理以及应用进展进行综述,以期为视觉损伤提供新的治疗思路。

The patients with advanced visual impairment have seriously affecting the quality of life with little effective treatment at present. In recent years, it has been demonstrated that the brain would automatically adapt its function and structure to recover visual function by visual cortex plasticity after visual impairment, which provides the possibility for visual recovery. Microperimetry biofeedback training, non-invasive brain stimulation and enriching environment can promote visual reshaping for patients with visual impairment. However, the principle of visual cortex plasticity has not been determined yet, and its application is still limited. The theoretical basis and recent application of visual cortex plasticity were reviewed in order to provide new therapeutic ideas for patients with visual impairment.

图1 视觉损伤的小鼠模型中跨模式重组大脑皮质-丘脑投射的示意图 可见下丘的听觉信息能通过异常连接传递至负责视觉的外侧膝状体,或者直接经丘脑负责听觉的内侧膝状体异常传递至初级视觉皮质,使其能被听觉信息激活
表1 利用视觉重塑治疗的文献汇总
第一作者(年份) 研究设计 分组 治疗方法 方案 改善的指标
Schatz等[45](2016) 前瞻性、随机及部分盲 对照组20例,150%EPT组15例,200%EPT组17例 ACS 每周一次,每次30 min(20 Hz交流电),持续52周 视野丢失速度和视网膜电图b波
Ratra等[42](2018)   AMD 10例,STGD 4例,MS 2例,CNV 2例,近视性MD1例 MBFT 隔日一次,每次10 min,训练10次 视力、视网膜敏感度、固视稳定性及低视力临床生活表得分
Melillo等[39](2020) 单中心、部分盲及随机对照 干预组12例,对照组12例 MBFT 每周一次,每次10 min,训练12次 V1激活、BCVA、黄斑敏感度及固视稳定性
Sahli等[41](2020) 回顾性 AMD17例,STGD14例,CD4例 MBFT 隔日一次,每次10 min,训练10次 BCVA、阅读准确性、视功能问卷总分、近活动度评分及固视稳定性
El-Nahas等[44](2021) 前瞻性、随机、双盲及病例对照 脑卒中继发VFD干预组21例,对照组11例 TMS 隔日一次,每次580 s(由1000次频率为10 Hz的脉冲组成),训练16次 平均偏差、视野指数及视功能问卷评分
Räty等[48](2021) 随机、双盲、假对照及三臂 (1)脑卒中偏盲ACS8例,ACS联合DCS8例,对照组8例;(2)ACS9例,对照组9例;(3)DCS7例,对照组7例 ACS,DCS 每天一次,每次20~40 min,持续2周(不计周末) 单独用ACS组与ACS+DCS组较对照组无差异,单用DCS改善患者视野,ACS改善黄斑敏感度
Qian等[40](2022) 前瞻性 AMD7例,近视性MD10例 MBFT 每周两次,每次10 min,持续20周 视力、阅读速度、平均中心敏感度、固视稳定性及视功能问卷评分
[1]
Assi L, Chamseddine F, Ibrahim P, et al. A global assessment of eye health and quality of life: a systematic review of systematic reviews [J]. JAMA Ophthalmol, 2021, 139(5): 526-541.
[2]
国家重点研发计划YFC2008200项目组,中华医学会眼科学分会眼视光学组,中国医师协会眼科医师分会眼视光专业委员会. 中国低视力康复临床指南(2021) [J]. 中华眼视光学与视觉科学杂志202123(3):161-170.
[3]
Baroncelli L, Lunghi C. Neuroplasticity of the visual cortex: in sickness and in health [J]. Exp Neurol, 2021, 335: 113515.
[4]
Strettoi E, Di-Marco B, Orsini N, et al. Retinal plasticity [J]. Int J Mol Sci, 2022, 23(3): 1138.
[5]
Weerasinghe-Mudiyanselage PDE, Ang MJ, Kang S, et al. Structural plasticity of the hippocampus in neurodegenerative diseases [J]. Int J Mol Sci, 2022, 23(6): 3349.
[6]
Tailor VK, Schwarzkopf DS, Dahlmann-Noor AH. Neuroplasticity and amblyopia: vision at the balance point [J]. Curr Opin Neurol, 2017, 30(1): 74-83.
[7]
Castaldi E, Lunghi C, Morrone MC. Neuroplasticity in adult human visual cortex [J]. Neurosci Biobehav Rev, 2020, 112: 542-552.
[8]
Groleau M, Nazari-Ahangarkolaee M, Vanni MP, et al. Mesoscopic cortical network reorganization during recovery of optic nerve injury in GCaMP6s mice [J]. Sci Rep, 2020, 10(1): 21472.
[9]
Yamahachi H, Marik SA, McManus JNJ, et al. Rapid axonal sprouting and pruning accompany functional reorganization in primary visual cortex [J]. Neuron, 2009, 64(5): 719-729.
[10]
Keck T, Mrsic-Flogel TD, Vaz-Afonso M, et al. Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex [J]. Nat Neurosci, 2008, 11(10): 1162-1167.
[11]
Sabel BA, Kasten E. Restoration of vision by training of residual functions [J]. Curr Opin Ophthalmol, 2000, 11(6): 430-436.
[12]
Sabel BA, Henrich-Noack P, Fedorov A, et al. Vision restoration after brain and retina damage: the " residual vision activation theory" [J]. Prog Brain Res, 2011, 192(8): 199-262.
[13]
Sabel BA, Flammer J, Merabet LB. Residual vision activation and the brain-eye-vascular triad: Dysregulation, plasticity and restoration in low vision and blindness——a review [J]. Restor Neurol Neurosci, 2018, 36(6): 767-791.
[14]
Ricciardi E, Pietrini P. New light from the dark: what blindness can teach us about brain function [J]. Curr Opin Neurol, 2011, 24(4): 357-363.
[15]
Merabet LB, Pascual-Leone A. Neural reorganization following sensory loss: the opportunity of change [J]. Nat Rev Neurosci, 2010, 11(1): 44-52.
[16]
Fine I, Park J-M. Blindness and human brain plasticity [J]. Annu Rev Vis Sci, 2018, 4: 337-356.
[17]
Collignon O, Dormal G, Albouy G, et al. Impact of blindness onset on the functional organization and the connectivity of the occipital cortex [J]. Brain, 2013, 136(9): 2769-2783.
[18]
Kujala T, Alho K, Näätänen R. Cross-modal reorganization of human cortical functions [J]. Trends Neurosci, 2000, 23(3): 115-120.
[19]
López-Bendito G, Aníbal-Martínez M, Martini FJ. Cross-modal plasticity in brains deprived of visual input before vision [J]. Annu Rev Neurosci, 2022, 45: 471-489.
[20]
Kanjlia S, Loiotile RE, Harhen N, et al. Visual cortices of congenitally blind adults are sensitive to response selection demands in a go/no-go task [J]. NeuroImage, 2021, 236(11): 118023.
[21]
Masuda Y, Takemura H, Terao M, et al. V1 Projection zone signals in human macular degeneration depend on task despite absence of visual stimulus [J]. Curr Biol, 2021, 31(2): 406-412.
[22]
Legge GE, Chung STL. Low Vision and Plasticity: Implications for Rehabilitation [J]. Annu Rev Vis Sci, 2016, 2: 321-343.
[23]
Bottari D, Kekunnaya R, Hense M, et al. Motion processing after sight restoration: No competition between visual recovery and auditory compensation [J]. NeuroImage, 2018, 167: 284-296.
[24]
Mowad TG, Willett AE, Mahmoudian M, et al. Compensatory cross-modal plasticity persists after sight restoration [J]. Front Neurosci, 2020, 14: 291.
[25]
Baker CI, Peli E, Knouf N, et al. Reorganization of visual processing in macular degeneration [J]. J Neurosci, 2005, 25(3): 614-618.
[26]
Chung STL. Cortical reorganization after long-term adaptation to retinal lesions in humans [J]. J Neurosci, 2013, 33(46): 18080-18086.
[27]
Burnat K, Hu TT, Kossut M, et al. Plasticity beyond V1: reinforcement of motion perception upon binocular central retinal lesions in adulthood [J]. J Neurosci, 2017, 37(37): 8989-8999.
[28]
Keliris GA, Shao Y, Schmid MC, et al. Macaque area V2/V3 reorganization following homonymous retinal lesions [J]. Front Neurosci, 2022, 16: 757091.
[29]
Liu T, Cheung SH, Schuchard RA, et al. Incomplete cortical reorganization in macular degeneration [J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6826-6834.
[30]
Brown HDH, Gouws AD, Vernon RJW, et al. Assessing functional reorganization in visual cortex with simulated retinal lesions [J]. Brain Struct Funct, 2021, 226(9): 2855-2867.
[31]
Chung STL. The Glenn A. Fry Award Lecture 2012: Plasticity of the visual system following central vision loss [J]. Optom Vis Sci, 2013, 90(6): 520-529.
[32]
Schumacher EH, Jacko JA, Primo SA, et al. Reorganization of visual processing is related to eccentric viewing in patients with macular degeneration [J]. Restor Neurol Neurosci, 2008, 26(4-5): 391-402.
[33]
Crossland MD, Culham LE, Kabanarou SA, et al. Preferred retinal locus development in patients with macular disease [J]. Ophthalmology, 2005, 112(9): 1579-1585.
[34]
Bernard JB, Chung STL. Visual acuity is not the best at the preferred retinal locus in people with macular disease [J]. Optom Vis Sci, 2018, 95(9): 829-836.
[35]
Li S, Deng X, Chen Q, et al. Characteristics of preferred retinal locus in eyes with central vision loss secondary to different macular lesions [J]. Semin Ophthalmol, 2021, 36(8): 734-741.
[36]
Erbezci M, Ozturk T. Preferred retinal locus locations in age-related macular degeneration[J]. Retina, 2018, 38(12): 2372-2378.
[37]
Vingolo EM, Napolitano G, Fragiotta S. Microperimetric biofeedback training: fundamentals, strategies and perspectives [J]. Front Biosci, 2018, 10(1): 48-64.
[38]
Li S, Deng X, Zhang J. An overview of preferred retinal locus and its application in biofeedback training for low-vision rehabilitation [J]. Semin Ophthalmol, 2022, 37(2): 142-152.
[39]
Melillo P, Prinster A, Di-Iorio V, et al. Biofeedback rehabilitation and visual cortex response in stargardt′s disease: a randomized controlled trial [J]. Transl Vis Sci Technol, 2020, 9(6): 6.
[40]
Qian T, Xu X, Liu X, et al. Efficacy of MP-3 microperimeter biofeedback fixation training for low vision rehabilitation in patients with maculopathy [J]. BMC Ophthalmol, 2022, 22(1): 197.
[41]
Sahli E, Altinbay D, Bingol-Kiziltunc P, et al. Effectiveness of low vision rehabilitation using microperimetric acoustic biofeedback training in patients with central scotoma [J]. Curr Eye Res, 2021, 46(5): 731-738.
[42]
Ratra D, Gopalakrishnan S, Dalan D, et al. Visual rehabilitation using microperimetric acoustic biofeedback training in individuals with central scotoma [J]. Clin Exp Optom, 2019, 102(2): 172-179.
[43]
Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases [J]. Neuropharmacology, 2013, 64: 579-587.
[44]
El-Nahas N, Elbokl AM, Abd-Eldayem EH, et al. Navigated perilesional transcranial magnetic stimulation can improve post-stroke visual field defect: A double-blind sham-controlled study [J]. Restor Neurol Neurosci, 2021, 39(3): 199-207.
[45]
Schatz A, Pach J, Gosheva M, et al. Transcorneal electrical stimulation for patients with retinitis pigmentosa: a prospective, randomized, sham-controlled follow-up study over 1 year [J]. Invest Ophthalmol Vis Sci, 2017, 58(1): 257-269.
[46]
Liu J, Tong K, Lin Y, et al. Effectiveness of microcurrent stimulation in preserving retinal function of blind leading retinal degeneration and optic neuropathy: a systematic review [J]. Neuromodulation, 2021, 24(6): 992-1002.
[47]
Sabel BA, Thut G, Haueisen J, et al. Vision modulation, plasticity and restoration using non-invasive brain stimulation——An IFCN-sponsored review [J]. Clin Neurophysiol, 2020, 131(4): 887-911.
[48]
Räty S, Borrmann C, Granata G, et al. Non-invasive electrical brain stimulation for vision restoration after stroke: An exploratory randomized trial (REVIS) [J]. Restor Neurol Neurosci, 2021, 39(3): 221-235.
[49]
张琦琪,吴毅. 丰富环境在缺血性脑损伤康复中的应用研究进展 [J]. 中华物理医学与康复杂志202244(6):551-555.
[50]
Alwis DS, Rajan R. Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury [J]. Front Syst Neurosci, 2014, PMID: 25228861.
[51]
Dieguez HH, Calanni JS, Romeo HE, et al. Enriched environment and visual stimuli protect the retinal pigment epithelium and photoreceptors in a mouse model of non-exudative age-related macular degeneration [J]. Cell Death Dis, 2021, 12(12): 1128.
[52]
Fleitas MFG, Aranda ML, Diéguez HH, et al. The " use it or lose it" dogma in the retina: visual stimulation promotes protection against retinal ischemia [J]. Mol Neurobiol, 2020, 57(1): 435-449.
[53]
Aranda ML, González Fleitas MF, Dieguez HH, et al. Therapeutic benefit of environmental enrichment on optic neuritis [J]. Neuropharmacology, 2019, 145(Pt A): 87-98.
[54]
González-Fleitas MF, Dorfman D, Rosenstein RE. A novel viewpoint in glaucoma therapeutics: enriched environment [J]. Neural Regen Res, 2022, 17(7): 1431-1439.
[55]
Barone I, Novelli E, Piano I, et al. Environmental enrichment extends photoreceptor survival and visual function in a mouse model of retinitis pigmentosa [J]. PLoS One, 2012, 7(11): e50726.
[56]
Dorfman D, Aranda ML, Rosenstein RE. Enriched environment protects the optic nerve from early diabetes-induced damage in adult rats [J]. PLoS One, 2015, 10(8): e0136637.
[57]
Abuleil D, Thompson B, Dalton K. Aerobic exercise and human visual cortex neuroplasticity: a narrative review [J]. Neural Plasticity, 2022, PMID: 35915651.
[58]
崔博豪,颜华. 运动与年龄相关性黄斑变性的研究进展 [J]. 中华眼科杂志202258(12):1079-1083.
[1] 杜雪, 刘伟才. 面部初级感觉和运动皮层在口腔环境改变时的神经可塑性研究进展[J]. 中华口腔医学研究杂志(电子版), 2018, 12(01): 64-67.
[2] 崔珊珊, 邹燕红. 重视老年性黄斑变性患者的视觉康复治疗[J]. 中华眼科医学杂志(电子版), 2018, 08(02): 49-55.
[3] 孙玮, 武桥, 高励, 杨建中. 经颅磁刺激在酒精使用障碍应用的研究及探讨[J]. 中华脑科疾病与康复杂志(电子版), 2020, 10(03): 174-177.
[4] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
阅读次数
全文


摘要