切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (04) : 226 -230. doi: 10.3877/cma.j.issn.2095-2007.2023.04.007

综述

甲状腺相关性眼病表观遗传学的研究进展
张瑞琪, 张丽娟, 孙斌()   
  1. 030001 太原,山西医科大学第一临床医学院2020级硕士研究生
    030002 太原,山西省眼科医院视网膜2科
    030002 太原,山西省眼科医院眼眶科
  • 收稿日期:2023-01-14 出版日期:2023-08-28
  • 通信作者: 孙斌
  • 基金资助:
    山西省中医药管理局科研课题项目(2020ZYYC059); 山西省医学重点科研项目(2020XM07); 山西省眼科医院科研基金项目(C202101)

Progress in the epigenetics of thyroid associated ophthalmopathy

Ruiqi Zhang, Lijuan Zhang, Bin Sun()   

  1. Master′s degree 2020, First Clinical Colleage of Shanxi Medical University, Taiyuan 030001, China
    Second Department of Retina, Shanxi Eye Hospital, Taiyuan 030002, China
    Department of Orbital Ophthalmology, Shanxi Eye Hospital, Taiyuan 030002, China
  • Received:2023-01-14 Published:2023-08-28
  • Corresponding author: Bin Sun
引用本文:

张瑞琪, 张丽娟, 孙斌. 甲状腺相关性眼病表观遗传学的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 226-230.

Ruiqi Zhang, Lijuan Zhang, Bin Sun. Progress in the epigenetics of thyroid associated ophthalmopathy[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(04): 226-230.

甲状腺相关性眼病(TAO)的发生与发展及其表观遗传的关系密切。其中,TAO的发生与脱氧核糖核酸甲基化所引起的差异基因表达、非编码核糖核酸(RNA)调控及微小RNA(miRNA)相关。miRNA-155和miRNA-146a通过参与免疫炎症及脂肪组织的增殖分化等参与TAO的病理过程;miRNA-21的表达与TAO的活动性及严重程度相关;miRNA-130a和miRNA-27在TAO眼眶成纤维细胞的成脂分化及脂肪组织增生中发挥着重要作用;miRNA-199a-3p和miRNA-199a-5p可增加患者眼眶脂肪组织的氧化应激和血管生成;TAO患者的miRNA-183和miRNA-96在外周血分化簇(CD)4+T细胞中表达升高,参与TAO病程的调节免疫;miRNA-29可通过抑制转化生长因子β1信号通路抑制细胞纤维化;miRNA-143可通过直接靶向胰岛素样生长因子-1受体,间接降低促甲状腺素受体和核苷酸结合寡聚域样受体热蛋白结构域相关蛋白3浓度,调节TAO的炎症反应。此外,长链非编码RNA、环状RNA、转运RNA衍生片段及组蛋白修饰的表观遗传调控亦与TAO的发病相关。

The occurrence and development of thyroid associated ophthalmopathy (TAO) is related to the differential gene expression caused by DNA methylation, non coding RNA regulation, microRNA (miRNA). The miRNA-155 and miRNA-146a participated in the pathological process by participating in immune inflammation and the proliferation and differentiation of adipose tissue. The expression of miRNA-21 was correlated with the activity and severity of TAO. The miRNA-130a and miRNA-27 play an important role in the adipogenic differentiation of TAO orbital fibroblasts and the proliferation of adipose tissue. The miRNA-199a-3p and 5p increased tissue oxidative stress and angiogenesis in orbital adipocytes of TAO patients. The expression of miRNA-183 and miRNA-96 was increased in peripheral blood CD4+ T cells of TAO patients, which regulate immunity to participate in the progression. The miRNA-29 inhibits cell fibrosis by restricting transforming growth factor-β1 Signal path. The miRNA-143 regulates the inflammatory response by directly targeting insulin like growth factor-1 receptor and indirectly reducing thyrotropin receptor and nucleotide oligomerization domain-like receptor thermal protein domain associated protein 3 levels. In addition, the epigenetic regulation of long chain non coding RNAs, circular RNAs, transfer RNA derived fragments, and histone modification inactivation are also related to the pathogenesis of TAO.

表1 甲状腺相关性眼病表观遗传调控的miRNA汇总
[1]
廖洪斐,余进海. 甲状腺相关性眼病治疗现状[J]. 中华眼科杂志202258(8):635-640.
[2]
Yin X, Latif R, Bahn R, et al. Genetic profiling in Graves′ disease: further evidence for lack of a distinct genetic contribution to Graves′ ophthalmopathy[J]. Thyroid, 2012, 22(7): 730-736.
[3]
Khong JJ, Wang LY, Smyth GK, et al. Differential gene expression profiling of orbital adipose tissue in thyroid orbitopathy[J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6438-6447.
[4]
Rotondo DG, Bucci I, Lanzolla G, et al. Genetic profiling of orbital fibroblasts from patients with Graves′ orbitopathy[J]. J Clin Endocrinol Metab, 2021, 106(5): e2176-e2190.
[5]
Zhu L, Li S, He S, et al. The critical role of m(6)A methylation in the pathogenesis of Graves′ ophthalmopathy[J]. Eye Vis (Lond), 2020, 7(1): 55.
[6]
Virakul S, Somparn P, Pisitkun T, et al. Integrative analysis of proteomics and DNA methylation in orbital fibroblasts from Graves′ ophthalmopathy[J]. Front Endocrinol, 2020, 11: 619989.
[7]
Xin Z, Hua L, Shi TT, et al. A genome-wide DNA methylation analysis in peripheral blood from patients identifies risk loci associated with Graves′ orbitopathy[J]. J Endocrinol Invest, 2018, 41(6): 719-727.
[8]
Kozlowski E, Wasserman GA, Morgan M, et al. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses[J]. PLoS One, 2017, 12(6): e0179797.
[9]
Xin Z, Hua L, Yang YL, et al. A Pathway analysis based on genome-wide DNA methylation of Chinese patients with Graves′ orbitopathy[J]. Biomed Res Int, 2019, PMID: 9565794.
[10]
Wang X, Liu W, Rui Z, et al. Immunotherapy with a biologically active ICAM-1 mAb and an siRNA targeting TSHR in a BALB/c mouse model of Graves′ disease[J]. Endokrynol Pol, 2021, 72(6): 592-600.
[11]
Brooks J, Watson A, Korcsmaros T. Omics approaches to identify potential biomarkers of inflammatory diseases in the focal adhesion complex[J]. Genomics Proteomics Bioinformatics, 2017, 15(2): 101-109.
[12]
Shi TT, Hua L, Xin Z, et al. Identifying and validating genes with DNA methylation data in the context of biological network for Chinese patients with Graves′ orbitopathy[J]. Int J Endocrinol, 2019, PMID: 6212681.
[13]
Matsui M, Corey DR. Non-coding RNAs as drug targets[J]. Nat Rev Drug Discov, 2017, 16(3): 167-179.
[14]
Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones[J]. Cell, 2014, 157(1): 77-94.
[15]
Li K, Du Y, Jiang BL, et al. Increased microRNA-155 and decreased microRNA-146a may promote ocular inflammation and proliferation in Graves′ ophthalmopathy[J]. Med Sci Monit, 2014, 20: 639-643.
[16]
Woeller CF, Roztocil E, Hammond C, et al. TSHR Signaling stimulates proliferation through PI3K/Akt and induction of miR-146a and miR-155 in thyroid eye disease orbital fibroblasts[J]. Invest Ophthalmol Vis Sci, 2019, 60(13): 4336-4345.
[17]
Wang N, Chen FE, Long ZW. Mechanism of MicroRNA-146a/Notch2 signaling regulating IL-6 in Graves ophthalmopathy[J]. Cell Physiol Biochem, 2017, 41(4): 1285-1297.
[18]
Jang SY, Chae MK, Lee JH, et al. Role of miR-146a in the regulation of inflammation in an in vitro model of Graves′ orbitopathy[J]. Invest Ophthalmol Vis Sci, 2016, 57(10): 4027-4034.
[19]
Jang SY, Park SJ, Chae MK, et al. Role of microRNA-146a in regulation of fibrosis in orbital fibroblasts from patients with Graves′ orbitopathy[J]. Br J Ophthalmol, 2018, 102(3): 407-414.
[20]
Liu W, Ma C, Li HY, et al. MicroRNA-146a downregulates the production of hyaluronic acid and collagen Ⅰ in Graves′ ophthalmopathy orbital fibroblasts[J]. Exp Ther Med, 2020, 20(5): 38.
[21]
Wei H, Guan M, Qin Y, et al. Circulating levels of miR-146a and IL-17 are significantly correlated with the clinical activity of Graves′ ophthalmopathy[J]. Endocr J, 2014, 61(11): 1087-1092.
[22]
Ortega-Campos SM, García-Heredia JM.The multitasker protein: a look at the multiple capabilities of NUMB[J]. Cells, 2023, 12(2): 333.
[23]
Hu ZJ, He JF, Li KJ, et al. Decreased microRNA-146a in CD4+T cells promote ocular inflammation in thyroid-associated ophthalmopathy by targeting NUMB[J]. Eur Rev Med Pharmacol Sci, 2017, 21(8): 1803-1809.
[24]
杨文娟,班胜刚,何剑峰. 甲状腺相关眼病患者外周血单个核细胞中微小RNA-146a的异常表达及意义[J]. 眼科新进展201232(5):414-417.
[25]
Martínez-Hernández R, Sampedro-Núňez M, Serrano-Somavilla A, et al. A MicroRNA signature for evaluation of risk and severity of autoimmune thyroid diseases[J]. J Clin Endocrinol Metab, 2018, 103(3): 1139-1150.
[26]
Lee JY, Yun M, Paik JS, et al. PDGF-BB enhances the proliferation of cells in human orbital fibroblasts by suppressing PDCD4 expression via up-regulation of microRNA-21[J]. Invest Ophthalmol Vis Sci, 2016, 57(3): 908-913.
[27]
Tong BD, Xiao MY, Zeng JX, et al. MiRNA-21 promotes fibrosis in orbital fibroblasts from thyroid-associated ophthalmo-pathy[J]. Mol Vis, 2015, 21: 324-334.
[28]
Hammond CL, Roztocil E, Gonzalez MO, et al. MicroRNA-130a is elevated in thyroid eye disease and increases lipid accumulation in fibroblasts through the suppression of AMPK[J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 29.
[29]
Wu Y, Guan S, Ge Y, et al. Cigarette smoke promotes chronic obstructive pulmonary disease (COPD) through the miR-130a/Wnt1 axis[J]. Toxicol In Vitro, 2020, 65: 104770.
[30]
Lin Q, Gao Z, Alarcon RM, et al. A role of miR-27 in the regulation of adipogenesis[J]. FEBS J, 2009, 276(8): 2348-2358.
[31]
Jang SY, Chae MK, Lee JH, et al. MicroRNA-27 inhibits adipogenic differentiation in orbital fibroblasts from patients with Graves′ orbitopathy[J]. PLoS One, 2019, 14(8): e0221077.
[32]
Shi XE, Li YF, Jia L, et al. MicroRNA-199a-5p affects porcine preadipocyte proliferation and differentiation[J]. Int J Mol Sci, 2014, 15(5): 8526-8538.
[33]
Gao Y, Cao Y, Cui X, et al. miR-199a-3p regulates brown adipocyte differentiation through mTOR signaling pathway[J]. Mol Cell Endocrinol, 2018, 476: 155-164.
[34]
Craps J, Joris V, Baldeschi L, et al. miR-199a downregulation as a driver of the NOX4/HIF-1α/VEGF-A pathway in thyroid and orbital adipose tissues from Graves′ patients[J]. Int J Mol Sci, 2021, 23(1): 153.
[35]
Lanzolla G, Marinò M, Marcocci C.Selenium in the treatment of Graves′ hyperthyroidism and eye disease[J]. Front Endocrinol (Lausanne), 2020, 11: 608428.
[36]
Thiel J, Alter C, Luppus S, et al. MicroRNA-183 and microRNA-96 are associated with autoimmune responses by regulating T cell activation[J]. J Autoimmun, 2019, 96: 94-103.
[37]
Fuentes-Calvo I, Blázquez-Medela AM, Eleno N, et al. H-Ras isoform modulates extracellular matrix synthesis, proliferation, and migration in fibroblasts[J]. Am J Physiol Cell Physiol, 2012, 302(4): C686-C697.
[38]
Tan J, Tong BD, Wu YJ, et al. MicroRNA-29 mediates TGFβ1-induced extracellular matrix synthesis by targeting wnt/β-catenin pathway in human orbital fibroblasts[J]. Int J Clin Exp Pathol, 2014, 7(11): 7571-7577.
[39]
Tang W, Lv Q, Huang X, et al. MiR-143 Targets IGF-1R to suppress autoimmunity in thyroid-associated ophthalmopathy[J]. J Inflamm Res, 2022, 15: 1543-1554.
[40]
Khong JJ, McNab AA, Ebeling PR, et al. Pathogenesis of thyroid eye disease: review and update on molecular mechanisms[J]. Br J Ophthalmol, 2016, 100(1): 142-150.
[41]
Zhang L, Masetti G, Colucci G, et al. Combining micro-RNA and protein sequencing to detect robust biomarkers for Graves′ disease and orbitopathy[J]. Sci Rep, 2018, 8(1): 8386.
[42]
Wu L, Li L, Liang Y, et al. Identification of differentially expressed long non-coding RNAs and mRNAs in orbital adipose/connective tissue of thyroid-associated ophthalmopathy[J]. Genomics, 2021, 113(2): 440-449.
[43]
Wang N, Hou SY, Qi X, et al. LncRNA LPAL2/miR-1287-5p/EGFR axis modulates TED-derived orbital fibroblast activation through cell adhesion factors[J]. J Clin Endocrinol Metab, 2021, 106(8): e2866-e2886.
[44]
Wu L, Zhou R, Diao J, et al. Differentially expressed circular RNAs in orbital adipose/connective tissue from patients with thyroid-associated ophthalmopathy[J]. Exp Eye Res, 2020, 196: 108036.
[45]
Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?[J] Cell, 2011, 146(3): 353-358.
[46]
Yue Z, Mou P, Chen S, et al. A novel competing endogenous RNA network associated with the pathogenesis of Graves′ ophthalmopathy[J]. Front Genet, 2021, 12: 795546.
[47]
Yue Z, Tong F, Zeng C, et al. Identification of tRNA-related fragments and their potential regulatory effects in thyroid-associated ophthalmopathy[J]. Front Genet, 2022, 13: 878405.
[48]
Zhang Y, Sun Z, Jia J, et al. Overview of histone modification[J]. Adv Exp Med Biol, 2021, 1283: 1-16.
[49]
Matheis N, Lantz M, Grus FH, et al. Proteomics of orbital tissue in thyroid-associated orbitopathy[J]. J Clin Endocrinol Metab, 2015, 100(12): E1523- E1530.
[50]
Ekronarongchai S, Palaga T, Saonanon P, et al. Histone deacetylase 4 controls extracellular matrix production in orbital fibroblasts from Graves′ ophthalmopathy patients[J]. Thyroid, 2021, 31(10): 1566-1576.
[1] 周浩, 易萍, 李力. 表观遗传学在无创性产前诊断中的应用进展[J]. 中华妇幼临床医学杂志(电子版), 2012, 08(05): 650-653.
[2] 黄威, 刘启, 陈流华, 滕茶香, 区喆建, 刘韩笑, 陈健聪, 张昆松. 新定义的可预测肝癌预后的焦亡相关lncRNA模型[J]. 中华普通外科学文献(电子版), 2023, 17(05): 357-365.
[3] 江骏斌, 陈征, 卓育敏. DNMT1在前列腺癌中相关研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(06): 485-488.
[4] 徐新丽, 于小勇. 表观遗传——中医药治疗糖尿病肾病新视角[J]. 中华肾病研究电子杂志, 2022, 11(05): 276-280.
[5] 杜晓艳, 冯宇颖, 马良, 付平. 组蛋白去乙酰化酶抑制剂与肾脏疾病[J]. 中华肾病研究电子杂志, 2019, 08(05): 226-229.
[6] 张鹏, 张朝霞, 闫春芳, 孙斌. 硒制剂在甲状腺相关性眼病治疗中的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 316-320.
[7] 姬璇, 张朝霞, 闫春芳, 孙斌. 甲状腺相关性眼病氧化应激反应的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(02): 124-128.
[8] 马星宇, 张朝霞, 孙斌. 甲状腺相关性眼病泪腺病变发病机制及其诊断的研究进展[J]. 中华眼科医学杂志(电子版), 2020, 10(01): 58-62.
[9] 景丽萍, 王建颖, 孙斌. 老年甲状腺相关性眼病的临床研究现状[J]. 中华眼科医学杂志(电子版), 2019, 09(03): 182-186.
[10] 娜迪热·依明, 崔红, 努尔比亚·牙生, 祖莱娅提·阿不都热依木, 祖丽凯麦尔·阿布拉江, 麦麦提力·米吉提. 胶质瘤的表观遗传学发展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 309-315.
[11] 周良辅. 脑膜瘤的精准医学现状[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 193-195.
[12] 杜鹏, 张晓丽, 赵晓勇. DNA甲基化调控对男性不育的影响及其作用机制[J]. 中华临床医师杂志(电子版), 2021, 15(01): 10-16.
[13] 阿地拉·阿里木, 郭艳英, 王新玲. Graves病表观遗传学的进展[J]. 中华临床医师杂志(电子版), 2018, 12(05): 302-305.
阅读次数
全文


摘要