[1] |
Idrees S, Sridhar J, Kuriyan AE. Proliferative Vitreoretinopathy: A Review[J]. Int Ophthalmol Clin, 2019, 59(1): 221-240.
|
[2] |
Garweg JG, Tappeiner C, Halberstadt M. Pathophysiology of proliferative vitreoretinopathy in retinal detachment[J]. Surv Ophthalmol, 2013, 58(4): 321-329.
|
[3] |
Pastor JC, Rojas J, Pastor-Idoate S, et al. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences[J]. Prog Retin Eye Res, 2016, 51: 125-155.
|
[4] |
Pastor JC, Méndez MC, de la Fuente MA, et al. Intraretinal immunohistochemistry findings in proliferative vitreoretinopathy with retinal shortening[J]. Ophthalmic Res, 2006, 38(4): 193-200.
|
[5] |
Sethi CS, Lewis GP, Fisher SK, et al. Glial remodeling and neural plasticity in human retinal detachment with proliferative vitreoretinopathy[J]. Investigative ophthalmology & visual science, 2005, 46(1): 329-342.
|
[6] |
Kruger EF, Nguyen QD, Ramos-Lopez M, et al. Proliferative vitreoretinopathy after trauma[J]. Int Ophthalmol Clin, 2002, 42(3): 129-143.
|
[7] |
Sul S, Gurelik G, Korkmaz S, et al. Pediatric Traumatic Retinal Detachments: Clinical Characteristics and Outcomes[J]. Ophthalmic Surg Lasers Imaging Retina, 2017, 48(2): 143-150.
|
[8] |
Pastor JC, Rodríguez de la Rúa E, Martín F, et al. Retinal shortening: the most severe form of proliferative vitreoretinopathy (PVR)[J]. Arch Soc Esp Oftalmol, 2003, 78(12): 653-657.
|
[9] |
Eibl KH, Lewis GP, Betts K, et al. The effect of alkylphosphocholines on intraretinal proliferation initiated by experimental retinal detachment[J]. Invest Ophthalmol Vis Sci, 2007, 48(3): 1305-1311.
|
[10] |
García M, Vecino E. Role of Müller glia in neuroprotection and regeneration in the retina[J]. Histol Histopathol, 2003, 18(4): 1205-1218.
|
[11] |
Bringmann A, Pannicke T, Grosche J, et al. Müller cells in the healthy and diseased retina[J]. Prog Retin Eye Res, 2006, 25(4): 397-424.
|
[12] |
Jakobiec FA, Thanos A, Stagner AM, et al. So-called massive retinal gliosis: A critical review and reappraisal[J]. Surv Ophthalmol, 2016, 61(3): 339-356.
|
[13] |
Lewis GP, Guérin CJ, Anderson DH, et al. Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment[J]. American journal of ophthalmology, 1994, 118(3): 368-376.
|
[14] |
Subirada PV, Paz MC, Ridano ME, et al. A journey into the retina: Müller glia commanding survival and death[J]. Eur J Neurosci, 2018, 47(12): 1429-1443.
|
[15] |
Bringmann A, Wiedemann P. Involvement of Müller glial cells in epiretinal membrane formation[J]. Graefes Arch Clin Exp Ophthalmol, 2009, 247(7): 865-883.
|
[16] |
Gerhardinger C, Costa MB, Coulombe MC, et al. Expression of acute-phase response proteins in retinal Müller cells in diabetes[J]. Investigative ophthalmology & visual science, 2005, 46(1): 349-357.
|
[17] |
Tezel G, Chauhan BC, LeBlanc RP, et al. Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma[J]. Investigative ophthalmology & visual science, 2003, 44(7): 3025-3033.
|
[18] |
Paranthan RR, Bargagna-Mohan P, Lau DL, et al. A robust model for simultaneously inducing corneal neovascularization and retinal gliosis in the mouse eye[J]. Mol Vis, 2011, 17: 1901-1908.
|
[19] |
Wizeman JW, Mohan R. Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis[J]. Biochem Biophys Res Commun, 2017, 487(1): 134-139.
|
[20] |
Lee SY, Surbeck JW, Drake M, et al. Increased Glial Fibrillary Acid Protein and Vimentin in Vitreous Fluid as a Biomarker for Proliferative Vitreoretinopathy[J]. Invest Ophthalmol Vis Sci, 2020, 61(5): 22.
|
[21] |
Lewis GP, Fisher SK. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression[J]. Int Rev Cytol, 2003, 230: 263-290.
|
[22] |
Bringmann A, Pannicke T, Biedermann B, et al. Role of retinal glial cells in neurotransmitter uptake and metabolism[J]. Neurochem Int, 2009, 54(3-4): 143-160.
|
[23] |
Lewis GP, Fisher SK. Müller cell outgrowth after retinal detachment: association with cone photoreceptors[J]. Invest Ophthalmol Vis Sci, 2000, 41(6): 1542-1545.
|
[24] |
Merriman DK, Sajdak BS, Li W, et al. Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina[J]. Exp Eye Res, 2016, 150: 90-105.
|
[25] |
Hippert C, Graca AB, Basche M, et al. RNAi-mediated suppression of vimentin or glial fibrillary acidic protein prevents the establishment of Müller glial cell hypertrophy in progressive retinal degeneration[J]. Glia, 2021, 69(9): 2272-2290.
|