切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (06) : 348 -353. doi: 10.3877/cma.j.issn.2095-2007.2019.06.005

论著

二项酶诱导剂对高糖环境下大鼠Müller细胞凋亡的影响
吴晓强1, 何薇2, 黄棋3, 吕红彬4,()   
  1. 1. 643020 四川省自贡市第三人民医院眼科
    2. 611130 四川省成都市温江区人民医院眼科
    3. 610071 四川省成都市第一人民医院眼科
    4. 646000 泸州,西南医科大学附属医院眼科
  • 收稿日期:2019-03-24 出版日期:2019-12-28
  • 通信作者: 吕红彬
  • 基金资助:
    四川省科技支撑计划项目(2015SZ0086)

Effects of a two-enzyme inducer on apoptosis in rat Müller cells in the high glucose environment

Xiaoqiang Wu1, Wei He2, Qi Huang3, Hongbin Lyn4,()   

  1. 1. Department of Ophthalmology, Zigong Third People′s Hospital, Zigong 643020, China
    2. Department of Ophthalmology, Chengdu Wenjiang District People′s Hospital, Chengdu 611130, China
    3. Department of Ophthalmology, Chengdu First People′s Hospital, Chengdu 610071, China
    4. Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
  • Received:2019-03-24 Published:2019-12-28
  • Corresponding author: Hongbin Lyn
引用本文:

吴晓强, 何薇, 黄棋, 吕红彬. 二项酶诱导剂对高糖环境下大鼠Müller细胞凋亡的影响[J/OL]. 中华眼科医学杂志(电子版), 2019, 09(06): 348-353.

Xiaoqiang Wu, Wei He, Qi Huang, Hongbin Lyn. Effects of a two-enzyme inducer on apoptosis in rat Müller cells in the high glucose environment[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(06): 348-353.

目的

探讨二项酶诱导剂5,6-二氢环戊烯-1,2-二硫杂环戊烯-3-硫酮(CPDT)对高糖环境下大鼠Müller细胞凋亡的影响及其与凋亡相关基因B淋巴细胞瘤-2(Bcl-2)和B淋巴细胞瘤-2相关X蛋白(Bax)通路的关系。

方法

体外培养SD大鼠的Müller细胞,采用数字表法随机分为对照组、高糖组和CPDT干预组。对照组给予25 mM DMEM完全培养基培养;高糖组给予65 mM DMEM完全培养基培养;CPDT干预组给予65 mM DMEM完全培养基和60 μM CPDT培养,均培养72 h。采用双染法流式细胞仪检测各组细胞凋亡和细胞周期的情况;采用蛋白免疫印迹杂交技术检测各组细胞Bcl-2和Bax蛋白的表达情况。不同组的组间比较采用单因素方差分析,当差异有统计学意义时,进一步采用LSD法两两比较。

结果

流式细胞仪检测的结果显示,高糖组的细胞凋亡率为(17.6±3.16)%;对照组的细胞凋亡率为(8.25±0.26)%;CPDT干预组的细胞凋亡率为(13.5±2.25)%,且三组细胞凋亡率间,差异有统计学意义(F=13.48,P<0.05)。蛋白免疫印迹杂交技术检测的结果显示,高糖组Bcl-2蛋白表达量较对照组降低,Bax蛋白表达量较对照组升高,且差异有统计学意义(t=150.38,234.46;P<0.05)。CPDT干预组Bcl-2蛋白表达量较高糖组升高,Bax蛋白表达量较高糖组降低,且差异有统计学意义(t=108.03,36.33;P<0.05)。

结论

高糖可通过上调Bax,下调Bcl-2表达,降低Bcl-2/Bax的比值,促进细胞凋亡。CPDT可增加高糖影响下的大鼠Müller细胞活性、Bcl-2的表达及Bcl-2/Bax的比值,抑制Bax的表达和高糖引起的大鼠Müller细胞的凋亡,从而起到保护高糖环境中Müller细胞受损伤的作用。

Objective

This aim of this study was to investigate the effect of 5, 6-dihydrocyclopentene-1, 2-dithiol-3-thione, a two-enzyme inducer(CPDT)on the apoptosis of rat Müller cells in the high glucose environment and whether it exerts its role through the apoptosis-related genes Bcl-2/Bax pathways, in order to explore the prospect of CPDT in the prevention and treatment of diabetic retinopathy.

Methods

SD rat Müller cells were cultured in vitro and randomly divided into 3 groups: control group (25 mM DMEM), high glucose group (65 mM DMEM), CPDT intervention group (65 mM DMEM + 60 uM CPDT). These cells were cultured for 72 h. Apoptosis and cell cycle changes were detected by the flow cytometry with double staining. The expressions of Bcl-2 and Bax proteins in each group were detected by Western blotting. Data were collected and one-way ANOVA was used to performstatistically analyzed between groups.

Results

The results of double staining flow cytometry showed that the apoptotic rate of high glucose group was (17.6±3.16%), that of control group was (8.25±0.26%), and that of CPDT intervention group was (13.5%±2.25%). There was statistically significant among them (F=13.48, P<0.05). The results of Western blotting hybridization detection showed that compared with the control group, the expression of Bcl-2 protein in the high glucose group was significantly decreased and the expression of Bax protein was significantly increased (t=150.38, 234.46; P<0.05). Compared with the high glucose group, the expression of Bcl-2 protein in the CPDT intervention group increased, Bax protein expression decreased (t=108.03, 36.33; P<0.05).

Conclusion

High glucose could up-regulate Bax, down-regulate Bcl-2 expression, decrease Bcl-2/Bax ratio, and promote apoptosis. CPDT could increase the activity of rat Müller cells, Bcl-2 expression and Bcl-2/Bax ratio, inhibit the expression of Bax from the pressure of high glucose, thereby inhibiting the apoptosis of rat Müller cells induced by high glucose, and had a protective effect on Müller cells in a high glucose environment.

图2 荧光显微镜下各组Müller细胞标志物波形蛋白染色图 图2A示细胞核的蓝色荧光;图2B示细胞质中的波形蛋白红色荧光;图2C示细胞核及胞质中的波形蛋白荧光组合(免疫组织荧光法染色,×40)
图4 各组细胞周期的流式图 图4A示对照组,图4B示高糖组,图4C示5,6-二氢环戊烯-1,2-二硫杂环戊烯-3-硫酮干预组;各组细胞周期未见明显改变
图5 各组细胞中B淋巴细胞瘤-2、B淋巴细胞瘤-2相关X蛋白的相对表达量 1~3分别示对照组、高糖组和5,6-二氢环戊烯-1,2-二硫杂环戊烯-3-硫酮干预组
[1]
International Diabetes Federation. Diabetes Atlas Eighth Edition 2017[EB/OL]. (2019-03-18)[2019-04-16].

URL    
[2]
Mohammadi M, Raiegani AAV, Jalali R, et al. The prevalence of retinopathy among type 2 diabetic patients in Iran: a systematic review and meta-analysis[J]. Rev Endocr Meta Dis, 2019, 20(1): 79-88.
[3]
Platania CBM, Maisto R, Trotta MC, et al. Retinal and circulating miRNA expression patterns in diabetic retinopathy: an in silico and in vivo approach[J]. Br J Pharmacol, 2019176: 2179-2194.
[4]
Sorrentino FS, Allkabes M, Salsini G, et al. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy[J]. Life Sci, 2016, 162: 54-59.
[5]
郑曰忠,王思慧. 糖尿病性视网膜病变的流行病学[J]. 中国眼耳鼻喉科杂志2001, 1(4): 63-65.
[6]
Wang J, Xu X, Elliott MH, et al. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage[J]. Diabetes, 2010, 59(9): 2297-2305.
[7]
Fan Y, Liu K, Wang Q, et al.Exendin-4 protects retinal cells from early diabetes in Goto-Kakizaki rats by increasing the Bcl-2/Bax and Bcl-xL/Bax ratios and reducing reactive gliosis[J]. Mol Vis, 2014, 20: 1557-1568.
[8]
Duan X, Li J, Li W, et al. Antioxidant tert-butylhydroquinone ameliorates arsenic-induced intracellular damages and apoptosis through induction of Nrf2-dependent antioxidant responses as well as stabilization of anti-apoptotic factor Bcl-2 in human keratinocytes[J]. Free Radic Biol Med, 2016, 94: 74-87.
[9]
何薇. 叔丁基对苯二酚对高糖环境下SD大鼠视网膜Müller细胞保护机制的研究[D]. 重庆:西南医科大学,2018.
[10]
Klein R, Klein BE, Moss SE, et a1. The Wisconsin Epidemiologic Study of diabetic retinopathy nXlV. Ten-year incidence and progression of diabetic retinopathy[J]. Arch Ophthalmol, 1994, 112(9): 1217-1228.
[11]
Klein R, Klein BE, Moss SE, et al.The Wisconsin epidemiologic study of diabetic retinopathy Ⅲ Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years [J]. Arch Ophthalmol, 1984102(4): 527-532.
[12]
Haddad OAW, Saad MK. Prevalence and risk factors for diabetic retinopathy among Omani diabetics[J]. Br J Ophthalmol, 1998, 82(8): 901-906.
[13]
许迅.糖尿病性视网膜病变新的国际临床分型[J]. 上海医学200528(1): 8-9.
[14]
Stitt AW. Advanced glycationI an important pathological event in diabetic and age related ocular disease[J]. Br J Ophthalmol, 2001, 86(l): 746-753.
[15]
Koya D, King GL. Protein kinase C activation and the development of diabetic complications[J]. Diabetes, 1998, 47(6): 859-866.
[16]
Sayeski PP, Kudlow JE. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription[J]. J Bioi Chem, 1996, 271(25): 15237-15243.
[17]
刘堃,许迅. 糖尿病性视网膜病变眼科治疗的新进展[J]. 上海医学2009, 32(5): 369-371.
[18]
Rungger-Brandle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2000, 41(7): 1971-1980.
[19]
Antonetti DA, Barber AJ, Bronson SK, et a1. Diabetic retinopathy: Seeing beyond glucose-induced microvascular disease[J]. Diabetes, 2006, 55(9): 2401-2411.
[20]
Jeong IK, King GL. New perspectives on diabetic vascular complications: the loss of endogenous protective factors induced by hyperglycemia[J]. Diabetes Metab J, 2011, 35(1): 8-11.
[21]
Khoo K, Man REK, Rees G, et al. The relationship between diabetic retinopathy and psychosocial functioning: a systematic review[J].Quali Life Res, 2019, 28(8): 2017-2039.
[22]
Liu H, Gu WZ, et al. Evaluate the muller cells′ role in retinal neovascularization [J].Chin J Prac Ophthalmol, 2009, 27(9): 935-938.
[23]
Zeng K, Yang N, Wang D, et a1. Resveratrol prevents retinal dysfunction by regulating glutamate transporters, glutamine synthetase expression and activity in diabeticretina[J]. Neurochem Res, 2016, 41(5): 1050-1064.
[24]
Zeng K, Ming J, Yang N, et a1. Taurine prevents high glucose-induced angiopoietin-2/tie-2 system alterations and apoptosis in retinal microvascular pericytes[J]. Mol Cell Biochem, 2014, 396(1): 239-248.
[25]
Zeng K, Xu H, Chen K, et a1. Effects of taurine on glutamate uptake and degradation in Müller cells underdiabetic conditions via antioxidant mechanism[J]. Mol Cell Neuro Sci, 2010, 45(2): 192-199.
[26]
Li X, Bai Y. Toattach importance of basic research in Müller cell of diabetic retinopathy [J]. 中华眼科杂志(英文版), 2015, 51(5): 321-322.
[27]
Steinle JJ. Retinal endothelial cell apoptosis[J]. Apoptosis, 2012, 51(5): 1258-1260.
[28]
Wang D, Zhang P, Li Z, et al. Effects of mecobalamin on Bax and Bcl-2 in neurons after peripheral nerve injury[J]. Chi J Ind Hygiene Occup Dis, 2015(11): 841-843.
[29]
Romeo G, Liu WH, Asnaghi V, et al. Activation of nuclear factor-κappa B induced by diabetes and high glucose regulates a program in retina pericytes[J]. Diabetes, 2002, 51(7): 2241-2248.
[30]
何青春,刘婷,周利平,等. 轻中度亚低温对大鼠心肺复苏后脑细胞caspase-3、Bcl-2和Bax蛋白表达的影响[J]. 南方医科大学学报2013, 33(10): 1489-1493.
[31]
李捷萌,陈彦青,刘荣国. 线粒体凋亡途径与Bcl-2家族蛋白研究进展[J]. 医学综述2008, 14(4): 489-490.
[32]
王卫东,陈正堂. Bcl-2/Bax比率与细胞"命运" [J]. 中国肿瘤生物治疗杂志2007, 14(4): 393-396.
[33]
Liu XY, Li CY, Bu H, et al. Neuroprotective effect of CPDT on THA-induced cortical motor neuron death in an organotypic culture model[J]. Brain Res Bull, 2010, 83(6): 345-350.
[34]
Munday R, Zhang Y, Munday CM, et a1. Structure-activity relationships in the induction of phase Ⅱ enzymes by derivatives of 3H-l, 2-dithiole-3-thione in rats [J]. Chem Biol Interact, 2006, 160(2): 115-122.
[35]
Fan J, Xu G, Jiang T, et al. Pharmacologic induction of heme oxygenase-1 plays a protective role in diabetic retinopathy in rats [J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6541-6556.
[36]
Tian M, Zhang SY, Han PY, et al. tBHQ activates Nrf2 signaling pathways to enhance retinal protection in type 2 diabetic rats [J]. Rec Adv Ophthalmol, 2017, 37(3): 220-224.
[37]
田敏. Ⅱ相酶诱导剂对2型糖尿病大鼠视网膜核因子E2相关因子2及血红素氧合酶1表达的影响[D]. 泸州:泸州医学院,2014.
[38]
黄棋. CPDT二项酶诱导剂对高糖下大鼠müller细胞Nrf2和HO-1的影响[D]. 重庆:西南医科大学,2017.
[39]
Niture SK, Jaiswal AK. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis[J]. J Bio Chem, 2012, 287(13): 9873-9886.
[40]
Schmitz ML, Kracht M. Cyclin-dependent kinases as coregulatorsof inflammatory gene expression[J]. Trends Pharmacol Sci, 2016, 37(2): 101-113.
[1] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[2] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[3] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[4] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[5] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[6] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[7] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[8] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[9] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[10] 刘杜先, 张杰东, 付鲁渝, 熊志强, 龚程, 张小雅, 高明悦, 孟俊宏, 刘兰侠. 沉默circXPO1抑制肝癌细胞恶性生物学行为[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 159-166.
[11] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[12] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[13] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[14] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[15] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
阅读次数
全文


摘要