切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (06) : 348 -353. doi: 10.3877/cma.j.issn.2095-2007.2019.06.005

论著

二项酶诱导剂对高糖环境下大鼠Müller细胞凋亡的影响
吴晓强1, 何薇2, 黄棋3, 吕红彬4,()   
  1. 1. 643020 四川省自贡市第三人民医院眼科
    2. 611130 四川省成都市温江区人民医院眼科
    3. 610071 四川省成都市第一人民医院眼科
    4. 646000 泸州,西南医科大学附属医院眼科
  • 收稿日期:2019-03-24 出版日期:2019-12-28
  • 通信作者: 吕红彬
  • 基金资助:
    四川省科技支撑计划项目(2015SZ0086)

Effects of a two-enzyme inducer on apoptosis in rat Müller cells in the high glucose environment

Xiaoqiang Wu1, Wei He2, Qi Huang3, Hongbin Lyn4,()   

  1. 1. Department of Ophthalmology, Zigong Third People′s Hospital, Zigong 643020, China
    2. Department of Ophthalmology, Chengdu Wenjiang District People′s Hospital, Chengdu 611130, China
    3. Department of Ophthalmology, Chengdu First People′s Hospital, Chengdu 610071, China
    4. Department of Ophthalmology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
  • Received:2019-03-24 Published:2019-12-28
  • Corresponding author: Hongbin Lyn
引用本文:

吴晓强, 何薇, 黄棋, 吕红彬. 二项酶诱导剂对高糖环境下大鼠Müller细胞凋亡的影响[J]. 中华眼科医学杂志(电子版), 2019, 09(06): 348-353.

Xiaoqiang Wu, Wei He, Qi Huang, Hongbin Lyn. Effects of a two-enzyme inducer on apoptosis in rat Müller cells in the high glucose environment[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(06): 348-353.

目的

探讨二项酶诱导剂5,6-二氢环戊烯-1,2-二硫杂环戊烯-3-硫酮(CPDT)对高糖环境下大鼠Müller细胞凋亡的影响及其与凋亡相关基因B淋巴细胞瘤-2(Bcl-2)和B淋巴细胞瘤-2相关X蛋白(Bax)通路的关系。

方法

体外培养SD大鼠的Müller细胞,采用数字表法随机分为对照组、高糖组和CPDT干预组。对照组给予25 mM DMEM完全培养基培养;高糖组给予65 mM DMEM完全培养基培养;CPDT干预组给予65 mM DMEM完全培养基和60 μM CPDT培养,均培养72 h。采用双染法流式细胞仪检测各组细胞凋亡和细胞周期的情况;采用蛋白免疫印迹杂交技术检测各组细胞Bcl-2和Bax蛋白的表达情况。不同组的组间比较采用单因素方差分析,当差异有统计学意义时,进一步采用LSD法两两比较。

结果

流式细胞仪检测的结果显示,高糖组的细胞凋亡率为(17.6±3.16)%;对照组的细胞凋亡率为(8.25±0.26)%;CPDT干预组的细胞凋亡率为(13.5±2.25)%,且三组细胞凋亡率间,差异有统计学意义(F=13.48,P<0.05)。蛋白免疫印迹杂交技术检测的结果显示,高糖组Bcl-2蛋白表达量较对照组降低,Bax蛋白表达量较对照组升高,且差异有统计学意义(t=150.38,234.46;P<0.05)。CPDT干预组Bcl-2蛋白表达量较高糖组升高,Bax蛋白表达量较高糖组降低,且差异有统计学意义(t=108.03,36.33;P<0.05)。

结论

高糖可通过上调Bax,下调Bcl-2表达,降低Bcl-2/Bax的比值,促进细胞凋亡。CPDT可增加高糖影响下的大鼠Müller细胞活性、Bcl-2的表达及Bcl-2/Bax的比值,抑制Bax的表达和高糖引起的大鼠Müller细胞的凋亡,从而起到保护高糖环境中Müller细胞受损伤的作用。

Objective

This aim of this study was to investigate the effect of 5, 6-dihydrocyclopentene-1, 2-dithiol-3-thione, a two-enzyme inducer(CPDT)on the apoptosis of rat Müller cells in the high glucose environment and whether it exerts its role through the apoptosis-related genes Bcl-2/Bax pathways, in order to explore the prospect of CPDT in the prevention and treatment of diabetic retinopathy.

Methods

SD rat Müller cells were cultured in vitro and randomly divided into 3 groups: control group (25 mM DMEM), high glucose group (65 mM DMEM), CPDT intervention group (65 mM DMEM + 60 uM CPDT). These cells were cultured for 72 h. Apoptosis and cell cycle changes were detected by the flow cytometry with double staining. The expressions of Bcl-2 and Bax proteins in each group were detected by Western blotting. Data were collected and one-way ANOVA was used to performstatistically analyzed between groups.

Results

The results of double staining flow cytometry showed that the apoptotic rate of high glucose group was (17.6±3.16%), that of control group was (8.25±0.26%), and that of CPDT intervention group was (13.5%±2.25%). There was statistically significant among them (F=13.48, P<0.05). The results of Western blotting hybridization detection showed that compared with the control group, the expression of Bcl-2 protein in the high glucose group was significantly decreased and the expression of Bax protein was significantly increased (t=150.38, 234.46; P<0.05). Compared with the high glucose group, the expression of Bcl-2 protein in the CPDT intervention group increased, Bax protein expression decreased (t=108.03, 36.33; P<0.05).

Conclusion

High glucose could up-regulate Bax, down-regulate Bcl-2 expression, decrease Bcl-2/Bax ratio, and promote apoptosis. CPDT could increase the activity of rat Müller cells, Bcl-2 expression and Bcl-2/Bax ratio, inhibit the expression of Bax from the pressure of high glucose, thereby inhibiting the apoptosis of rat Müller cells induced by high glucose, and had a protective effect on Müller cells in a high glucose environment.

图2 荧光显微镜下各组Müller细胞标志物波形蛋白染色图 图2A示细胞核的蓝色荧光;图2B示细胞质中的波形蛋白红色荧光;图2C示细胞核及胞质中的波形蛋白荧光组合(免疫组织荧光法染色,×40)
图4 各组细胞周期的流式图 图4A示对照组,图4B示高糖组,图4C示5,6-二氢环戊烯-1,2-二硫杂环戊烯-3-硫酮干预组;各组细胞周期未见明显改变
图5 各组细胞中B淋巴细胞瘤-2、B淋巴细胞瘤-2相关X蛋白的相对表达量 1~3分别示对照组、高糖组和5,6-二氢环戊烯-1,2-二硫杂环戊烯-3-硫酮干预组
[1]
International Diabetes Federation. Diabetes Atlas Eighth Edition 2017[EB/OL]. (2019-03-18)[2019-04-16].

URL    
[2]
Mohammadi M, Raiegani AAV, Jalali R, et al. The prevalence of retinopathy among type 2 diabetic patients in Iran: a systematic review and meta-analysis[J]. Rev Endocr Meta Dis, 2019, 20(1): 79-88.
[3]
Platania CBM, Maisto R, Trotta MC, et al. Retinal and circulating miRNA expression patterns in diabetic retinopathy: an in silico and in vivo approach[J]. Br J Pharmacol, 2019176: 2179-2194.
[4]
Sorrentino FS, Allkabes M, Salsini G, et al. The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy[J]. Life Sci, 2016, 162: 54-59.
[5]
郑曰忠,王思慧. 糖尿病性视网膜病变的流行病学[J]. 中国眼耳鼻喉科杂志2001, 1(4): 63-65.
[6]
Wang J, Xu X, Elliott MH, et al. Müller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage[J]. Diabetes, 2010, 59(9): 2297-2305.
[7]
Fan Y, Liu K, Wang Q, et al.Exendin-4 protects retinal cells from early diabetes in Goto-Kakizaki rats by increasing the Bcl-2/Bax and Bcl-xL/Bax ratios and reducing reactive gliosis[J]. Mol Vis, 2014, 20: 1557-1568.
[8]
Duan X, Li J, Li W, et al. Antioxidant tert-butylhydroquinone ameliorates arsenic-induced intracellular damages and apoptosis through induction of Nrf2-dependent antioxidant responses as well as stabilization of anti-apoptotic factor Bcl-2 in human keratinocytes[J]. Free Radic Biol Med, 2016, 94: 74-87.
[9]
何薇. 叔丁基对苯二酚对高糖环境下SD大鼠视网膜Müller细胞保护机制的研究[D]. 重庆:西南医科大学,2018.
[10]
Klein R, Klein BE, Moss SE, et a1. The Wisconsin Epidemiologic Study of diabetic retinopathy nXlV. Ten-year incidence and progression of diabetic retinopathy[J]. Arch Ophthalmol, 1994, 112(9): 1217-1228.
[11]
Klein R, Klein BE, Moss SE, et al.The Wisconsin epidemiologic study of diabetic retinopathy Ⅲ Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years [J]. Arch Ophthalmol, 1984102(4): 527-532.
[12]
Haddad OAW, Saad MK. Prevalence and risk factors for diabetic retinopathy among Omani diabetics[J]. Br J Ophthalmol, 1998, 82(8): 901-906.
[13]
许迅.糖尿病性视网膜病变新的国际临床分型[J]. 上海医学200528(1): 8-9.
[14]
Stitt AW. Advanced glycationI an important pathological event in diabetic and age related ocular disease[J]. Br J Ophthalmol, 2001, 86(l): 746-753.
[15]
Koya D, King GL. Protein kinase C activation and the development of diabetic complications[J]. Diabetes, 1998, 47(6): 859-866.
[16]
Sayeski PP, Kudlow JE. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription[J]. J Bioi Chem, 1996, 271(25): 15237-15243.
[17]
刘堃,许迅. 糖尿病性视网膜病变眼科治疗的新进展[J]. 上海医学2009, 32(5): 369-371.
[18]
Rungger-Brandle E, Dosso AA, Leuenberger PM. Glial reactivity, an early feature of diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2000, 41(7): 1971-1980.
[19]
Antonetti DA, Barber AJ, Bronson SK, et a1. Diabetic retinopathy: Seeing beyond glucose-induced microvascular disease[J]. Diabetes, 2006, 55(9): 2401-2411.
[20]
Jeong IK, King GL. New perspectives on diabetic vascular complications: the loss of endogenous protective factors induced by hyperglycemia[J]. Diabetes Metab J, 2011, 35(1): 8-11.
[21]
Khoo K, Man REK, Rees G, et al. The relationship between diabetic retinopathy and psychosocial functioning: a systematic review[J].Quali Life Res, 2019, 28(8): 2017-2039.
[22]
Liu H, Gu WZ, et al. Evaluate the muller cells′ role in retinal neovascularization [J].Chin J Prac Ophthalmol, 2009, 27(9): 935-938.
[23]
Zeng K, Yang N, Wang D, et a1. Resveratrol prevents retinal dysfunction by regulating glutamate transporters, glutamine synthetase expression and activity in diabeticretina[J]. Neurochem Res, 2016, 41(5): 1050-1064.
[24]
Zeng K, Ming J, Yang N, et a1. Taurine prevents high glucose-induced angiopoietin-2/tie-2 system alterations and apoptosis in retinal microvascular pericytes[J]. Mol Cell Biochem, 2014, 396(1): 239-248.
[25]
Zeng K, Xu H, Chen K, et a1. Effects of taurine on glutamate uptake and degradation in Müller cells underdiabetic conditions via antioxidant mechanism[J]. Mol Cell Neuro Sci, 2010, 45(2): 192-199.
[26]
Li X, Bai Y. Toattach importance of basic research in Müller cell of diabetic retinopathy [J]. 中华眼科杂志(英文版), 2015, 51(5): 321-322.
[27]
Steinle JJ. Retinal endothelial cell apoptosis[J]. Apoptosis, 2012, 51(5): 1258-1260.
[28]
Wang D, Zhang P, Li Z, et al. Effects of mecobalamin on Bax and Bcl-2 in neurons after peripheral nerve injury[J]. Chi J Ind Hygiene Occup Dis, 2015(11): 841-843.
[29]
Romeo G, Liu WH, Asnaghi V, et al. Activation of nuclear factor-κappa B induced by diabetes and high glucose regulates a program in retina pericytes[J]. Diabetes, 2002, 51(7): 2241-2248.
[30]
何青春,刘婷,周利平,等. 轻中度亚低温对大鼠心肺复苏后脑细胞caspase-3、Bcl-2和Bax蛋白表达的影响[J]. 南方医科大学学报2013, 33(10): 1489-1493.
[31]
李捷萌,陈彦青,刘荣国. 线粒体凋亡途径与Bcl-2家族蛋白研究进展[J]. 医学综述2008, 14(4): 489-490.
[32]
王卫东,陈正堂. Bcl-2/Bax比率与细胞"命运" [J]. 中国肿瘤生物治疗杂志2007, 14(4): 393-396.
[33]
Liu XY, Li CY, Bu H, et al. Neuroprotective effect of CPDT on THA-induced cortical motor neuron death in an organotypic culture model[J]. Brain Res Bull, 2010, 83(6): 345-350.
[34]
Munday R, Zhang Y, Munday CM, et a1. Structure-activity relationships in the induction of phase Ⅱ enzymes by derivatives of 3H-l, 2-dithiole-3-thione in rats [J]. Chem Biol Interact, 2006, 160(2): 115-122.
[35]
Fan J, Xu G, Jiang T, et al. Pharmacologic induction of heme oxygenase-1 plays a protective role in diabetic retinopathy in rats [J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6541-6556.
[36]
Tian M, Zhang SY, Han PY, et al. tBHQ activates Nrf2 signaling pathways to enhance retinal protection in type 2 diabetic rats [J]. Rec Adv Ophthalmol, 2017, 37(3): 220-224.
[37]
田敏. Ⅱ相酶诱导剂对2型糖尿病大鼠视网膜核因子E2相关因子2及血红素氧合酶1表达的影响[D]. 泸州:泸州医学院,2014.
[38]
黄棋. CPDT二项酶诱导剂对高糖下大鼠müller细胞Nrf2和HO-1的影响[D]. 重庆:西南医科大学,2017.
[39]
Niture SK, Jaiswal AK. Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis[J]. J Bio Chem, 2012, 287(13): 9873-9886.
[40]
Schmitz ML, Kracht M. Cyclin-dependent kinases as coregulatorsof inflammatory gene expression[J]. Trends Pharmacol Sci, 2016, 37(2): 101-113.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[5] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[6] 邵浩仁, 郭佳. 铁死亡的分子机制及其在前列腺癌治疗中的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 294-298.
[7] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[8] 余慧, 王静, 杜丹, 杨帆. 下调miR-301a-3p抑制人卵巢颗粒KGN细胞增殖和诱导凋亡的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 137-143.
[9] 张师垚, 徐岩岩, 张琦, 李春强, 赵智成, 刘刚. m6A结合蛋白YTHDC2调节p38MAPK信号通路影响结直肠癌细胞凋亡[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 117-124.
[10] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[11] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[12] 邓世栋, 刘凌志, 郭大勇, 王超, 黄忠欣, 张晖辉. 沉默SNHG1基因对膀胱癌细胞增殖、凋亡、迁移和铁死亡的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 804-811.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 郭如烨, 孟黎明, 陈楠, 宋玉莹, 尹海燕, 郭岩. Apelin/APJ系统对帕金森病模型的神经保护作用及机制研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 276-282.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要