切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 146 -154. doi: 10.3877/cma.j.issn.2095-2007.2024.03.004

论著

基于全外显子组测序探寻Möbius综合征发病机制的遗传学研究
贾红艳1, 王丹1, 张冉冉1, 马茜2, 焦永红1,()   
  1. 1. 100730 首都医科大学附属北京同仁医院 北京同仁眼科中心 眼科学与视觉科学北京市重点实验室
    2. 710004 西安市人民医院(西安市第四医院)眼科 陕西省眼科医院 西北大学附属人民医院
  • 收稿日期:2024-05-11 出版日期:2024-06-28
  • 通信作者: 焦永红
  • 基金资助:
    国家自然科学基金面上项目(82070999); 国家自然科学基金面上项目(82371085)

Genetic analysis on the pathogenesis of Möbius syndrome based on whole exome sequencing

Hongyan Jia1, Dan Wang1, Ranran Zhang1, Qian Ma2, Yonghong Jiao1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing 100730, China
    2. Xi′an People′s Hospital (Xi′an Fourth Hospital), Shaanxi Eye Hospital, Affiliated People′s Hospital of Northwest University, Xi′an 710004, China
  • Received:2024-05-11 Published:2024-06-28
  • Corresponding author: Yonghong Jiao
引用本文:

贾红艳, 王丹, 张冉冉, 马茜, 焦永红. 基于全外显子组测序探寻Möbius综合征发病机制的遗传学研究[J]. 中华眼科医学杂志(电子版), 2024, 14(03): 146-154.

Hongyan Jia, Dan Wang, Ranran Zhang, Qian Ma, Yonghong Jiao. Genetic analysis on the pathogenesis of Möbius syndrome based on whole exome sequencing[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2024, 14(03): 146-154.

目的

探讨Möbius综合征(MBS)患者的临床特征及可能的遗传发病机制。

方法

收集2013年3月至2024年4月首都医科大学附属北京同仁医院眼科中心的14例(28只眼)散发MBS患者的病例资料。其中,男性5例(10只眼),女性9例(18只眼);年龄1 ~ 9岁,平均年龄(4.0±0.7)岁。询问或检查并记录患者的性别、年龄、最佳矫正视力、眼球运动、眼前节和眼底、体格发育及颅神经眼眶磁共振成像(MRI)的情况。采集患者及核心家系成员外周静脉血、提取基因组脱氧核糖核酸(DNA)并在illumina平台行全外显子组测序。使用SAMtools和ANNOVAR软件对变异进行识别和注释,对频率数据库中频率低于1%的变异进行过滤。在此基础上,筛选新生突变基因以及≥2个以上患者共有的突变基因。使用R包的maftools和GenVisR软件包分别行共有基因突变特征分析并绘制景观图。年龄、最小分辨角对数(logMAR)视力以及每个样本携带的共有基因突变数量经Shapiro-Wilk检验符合正态分布,以±s表示。性别、单侧或双侧受累、全身发育异常、突变分类、突变类型、突变频谱及共有基因突变频率采用频数和百分比描述。使用R语言ClusterProfiler中的超几何检验进行基因本体(GO)富集分析,使用Benjamini-Hochberg方法进行多重假设检验校正并筛选显著富集的条目。

结果

本研究9例(18只眼)患者的logMAR视力为0.56±0.12。双眼外转受限者有10例(20只眼),占71.43%(10/14);单眼外转受限者有4例(4只眼),占28.57%(4/14)。双侧面瘫者有5例,占35.7%(5/14);单侧面瘫者有9例,占64.3%(9/14)。伴其他全身发育异常的患者有9例,占64.29%(9/14)。双侧外展神经(CN6)发育不良者有11例,占78.57%(11/14);单侧CN6发育不良者有3例,占21.43%(3/14)。双侧面神经(CN7)发育不良者有9例,占64.3%(9/14),单侧CN7发育不良者有5例,占35.71%(5/14)。2例MBS患者发现致病候选基因丛状蛋白D1(PLXND1)新变异2个,分别为杂合错义变异c.C4207T、p.R1403W和剪切位点变异c.2937+6 G>T。14例患者共筛选出新生突变基因8个,分别为肌联蛋白(TTN)、碳酸酐酶9(CA9)、中间丝相关蛋白(RPTN)、SET结合因子2(SBF2)、丝状肌动蛋白结合蛋白(AFDN)、突触囊泡糖蛋白2C(SV2C)、神经丝蛋白重链(NEFH)和膜金属内肽酶样蛋白1(MMEL1)。≥2个以上患者共有的突变基因总计796个,突变数量为1987个。最常见的突变分类是错义突变,数量为1382个,占69.55%;最多见的突变类型是单碱基替换变异,数量为1534个,占77.20%;最常见的突变频谱是胞嘧啶被替换为胸腺嘧啶,数量为804个,占52.41%。每个样本所携带共有基因突变数量为126~161个,平均(141.93±11.35)个。按照突变频率排名,前10位的共有基因分别为B黑色素瘤抗原家族成员2/3/4/5(BAGE2/3/4/5)、与内体分选复合物Ⅲ相关的钠耐受增加1(IST1)、TTN、高尔基体蛋白A6家族样蛋白2(GOLGA6L2)、NEFH、UBX结构域蛋白11(UBXN11)、二氢硫辛胺支链转酰基酶E2 (DBT)、羰基还原酶4(CBR4)、肌动蛋白相关蛋白3C(ACTR3C)和含V-Set免疫球蛋白域蛋白2(VSIG2),频率分别为100%、93%、64%、64%、57%、50%、50%、50%、50%和43%。经GO数据库中的生物学过程数据库注释,在本研究全部MBS患者14例(28只眼)中发现的共有突变基因集的基因数量为701个,查询GO数据库获得背景基因集的基因数量为18 722个。比较不同通路的注释基因在此两个基因集中分布的差异,将其概率值按照升序排列,显著富集的通路依次为调控小谷氨酰胺转肽酶介导的信号转导、基于微管的运动、轴突发生、眼形态发生、通过质-膜粘附分子的细胞间粘附、肌动球蛋白结构组装、肌原纤维的组装及微管束的合成,其概率值依次为0.0002、0.004、0.004、0.004、0.004、0.004、0.011及0.011。

结论

MBS患者的临床表型异质性较强,多数患者伴随有除面瘫和眼球外转受限以外的多发先天畸形。基于全外显子组测序的生物信息学分析结果提示参与神经发育和轴突生长过程的多个基因和生物学过程可能与MBS发病相关,进一步揭示了遗传因素在MBS发病中的作用。

Objective

To explore the clinical features and possible genetic pathogenesis of patients with Möbius syndrome (MBS).

Methods

A total of 14 patients (28 eyes) with sporadic MBs were collected from the Eye Center of Beijing Tongren Hospital affiliated to Capital Medical University from March 2013 to April 2024. There were 5 males (10 eyes) and 9 females (18 eyes) with the average age of (4.0±0.7) years (ranging from 1 to 9 years). The patient′s gender, age, best corrected visual acuity, eye movement, anterior segment and fundus, physical development and cranial nerve orbital magnetic resonance imaging (MRI) were asked or examined and recorded. Peripheral venous blood samples of patients and core family members were collected, genomic DNA was extracted, and full exome sequencing was performed on Illumina platform. SAMtools and ANOVA software were used to identify and annotate the variation, and the variation with frequency less than 1% in the frequency database was filtered. On this basis, newborn mutant genes and mutant genes shared by more than 2 patients were screened. The common gene mutation characteristics were analyzed and the landscape map was drawn using the R package maftools and GenVisR software. Age, logarithm of minimum resolution angle (logMAR) vision and the number of common gene mutations carried by each sample conformed to the normal distribution by Shapiro-Wilk test, which was expressed as ±s. Gender, unilateral or bilateral involvement, systemic dysplasia, mutation classification, mutation type, mutation frequency spectrum and common gene mutation frequency were described by frequency and percentage. The hypergeometric test in the R language ClusterProfiler was used for gene ontology (GO) enrichment analysis, and the Benjamini-Hochberg method was used for multiple hypothesis test correction and screening the items with significant enrichment.

Results

The logMAR visual acuity of 9 patients (18 eyes) was 0.56±0.12. There were 10 cases (20 eyes) with limited binocular exotropia, accounting for 71.43% (10/14). There were 4 cases (4 eyes) with limited monocular exotropia, accounting for 28.57% (4/14); 5 cases with bilateral facial paralysis, accounting for 35.7% (5/14); 9 cases with unilateral facial paralysis, accounting for 64.3% (9/14); 9 patients with other systemic dysplasia, accounting for 64.29% (9/14); 11 cases with bilateral abducens nerve (CN6) dysplasia, accounting for 78.57% (11/14); 3 cases with unilateral cn6 dysplasia, accounting for 21.43% (3/14); 9 cases with bilateral nerve (CN7) dysplasia, accounting for 64.3% (9/14), and 5 cases with unilateral CN7 dysplasia, accounting for 35.71% (5/14). Two novel variants of PLXND1 were found in two MBS patients, which were heterozygous missense variants c. C4207T, p. R1403W and splice site variation c. 2937+ 6 G>T. A total of 8 newly mutated genes were screened out from 14 patients, including myonectin (TTN), carbonic anhydrase 9 (CA9), intermediate filament associated protein (RPTN), set binding factor 2 (SBF2), filamentous actin binding protein (AFDN), synaptic vesicular glycoprotein 2C (SV2C), neurofilament heavy chain (NEFH) and membrane metalloendopeptidase like protein 1 (MMEL1) A total of 796 genes were mutated in more than two patients, and the number of mutations was 1987. The most common mutation classification was missense mutation, with 1382 mutations, accounting for 69.55%. The most common mutation type was single base substitution mutation, the number was 1534, accounting for 77.20%. The most common mutation spectrum was that cytosine was replaced by thymine, accounting for 52.41%. The total number of gene mutations per sample was 126 to 161, with an average of (141.93±11.35). According to the mutation frequency ranking, the top 10 common genes were B melanoma antigen family member 2/3/4/5 (BAGE2/3/4/5), increased sodium tolerance associated with endosome sorting complex Ⅲ 1 (IST1), TTN, Golgi protein A6 family like protein 2 (GOLGA6L2), NEFH, Ubx structure domain protein 11 (UBXN11), dihydrothiooctylamine branched chain transferase E2 (DBT), carbonyl reductase 4 (CBR4), actin associated protein 3C (ACTR3C), and v-set containing immunoglobulin domain protein 2 (VSIG2); and the frequencies of ig2 were 100%, 93%, 64%, 64%, 57%, 50%, 50%, 50%, 50% and 43%. According to the annotation of biological process database in GO database, the number of genes in the common mutation gene set found in 14 patients (28 eyes) with MBS was 701, and the number of genes in the background gene set obtained by querying GO database was 18 722. The differences in the distribution of annotation genes of different pathways in the two genes were compared, and the probability values were arranged in ascending order. The pathways that were significantly enriched were the regulation of small glutamine transpeptidase mediated signal transduction, microtubule based movement, axogenesis, eye morphogenesis, intercellular adhesion through plasma membrane adhesion molecules, actin structural assembly, myofibril assembly and microtubule bundle synthesis, with the probability values of 0.0002, 0.004, 0.004, 0.004, 0.011 and 0.011, respectively.

Conclusions

The clinical phenotypic heterogeneity of MBS patients is strong. Most patients are accompanied by multiple congenital malformations except facial paralysis and limited exophthalmos. Bioinformatics analysis based on full exome sequencing suggested that multiple genes and biological processes involved in nerve development and axon growth may be related to the pathogenesis of MBS, further revealing the role of genetic factors in the pathogenesis of MBS.

图1 Möbius综合征患者(编号为M12-CJX)的面部、手和颅神经磁共振成像 图A示左侧面瘫;图B示伸舌右偏;图C示右手1~3指短指;图D示右手X线平片显示右手1~3指短指;图E示颅神经磁共振成像中双侧动眼神经正常显示(箭头);图F示双侧外展神经无显示(箭头);图G示左侧面神经正常显示(箭头);图H示右侧面神经无显示(箭头)
表1 Möbius综合征患者的临床表型和MRI影像学特征
表2 Möbius综合征患者新生突变基因列表
图2 Möbius综合征患者全外显子组测序的共有基因突变景观图 图A示样本突变负荷柱状图,横坐标代表不同测序样本,与图C的每一列样本相对应,纵坐标为每百万碱基突变数量;图B示共有基因突变频率柱状图,展示了突变频率前16位的共有基因;图C示突变热图,每一列对应不同测序样本,每一行对应图B相应位置的基因,不同颜色代表不同突变类型;图D示突变分类堆叠柱状图,展示了不同样本的突变分类构成比例,不同颜色代表不同突变类型
图3 Möbius综合征患者全外显子组测序共有基因突变特征分析 图A示共有基因的突变分类及数量,不同突变分类对应不同颜色,并与图D、图E和图F的颜色相对应,横坐标单位为(个);图B示共有基因的突变类型及数量,横坐标单位为(个);图C示单碱基替换的突变频谱及数量,横坐标单位为(个);图D示每个样本所携带的共有基因突变数量(个),红色虚线代表中值,纵坐标单位为(个);图E示每个样本所携带的共有基因不同突变分类的汇总箱线图,纵坐标单位为(个);图F示携带突变数量最多的前10位共有基因,横坐标单位为(个)
图4 Möbius综合征患者共有基因的基因本体-生物学过程富集分析柱形图及气泡图 图A为柱形图,显示了调整概率值后的前15个生物学过程;图B为气泡图,显示了调整基因计数后的前15个生物学过程
[1]
Verzijl HT, van der Zwaag B, Cruysberg JR, et al. Möbius syndrome redefined: a syndrome of rhombencephalic maldevelopment[J]. Neurology, 2003, 61(3): 327-333.
[2]
MacKinnon S, Oystreck DT, Andrews C, et al. Diagnostic distinctions and genetic analysis of patients diagnosed with moebius syndrome[J]. Ophthalmology, 2014, 121(7): 1461-1468.
[3]
Ghosh R, Shetty V, Hegde S, et al. Rare features associated with Mobius syndrome: Report of two cases[J]. J Dent Res Dent Clin Dent Prospects, 2017, 11(1): 60-65.
[4]
Picciolini O, Porro M, Cattaneo E, et al. Moebius syndrome: clinical features, diagnosis, management and early intervention[J]. Ital J Pediatr, 2016, 42(1): 56.
[5]
Bell C, Nevitt S, McKay VH, et al. Will the real Moebius syndrome please stand up? A systematic review of the literature and statistical cluster analysis of clinical features[J]. Am J Med Genet A 2019, 179(2): 257-265.
[6]
Möbius PJ. About congenital bilateral abducens and facialis palsy (1888)[J]. Strabismus, 2008, 16(1): 39-44.
[7]
Möbius P. Ueber angeborene doppelseitige Abducens-Facialis-Lahmung[J]. Munch Med Wochenschr, 1888, 35: 91-94.
[8]
Sogg RL. Congenital facial diplegia syndrome of Möbius: A case report[J]. Arch Ophthalmol, 1961, 65(1): 16-19.
[9]
Monawwer SA, Ali S, Naeem R, et al. Moebius syndrome: an updated review of literature[J]. Child Neurol Open, 2023, 10: 1-12.
[10]
Carta A, Mora P, Neri A, et al. Ophthalmologic and systemic features in Mobius syndrome an Italian case series[J]. Ophthalmology, 2011, 118: 1518-1523.
[11]
Carta A, Favilla S, Calzetti G, et al. The epidemiology of Moebius syndrome in Italy[J]. Orphanet J Rare Dis, 2021, 16(1): 162.
[12]
Zaidi SMH, Syed IN, Tahir U, et al. Moebius syndrome: what we know so far[J]. Cureus, 2023, 15(2): e35187.
[13]
Pamplona MDC, Ysunza PA, Telich-Tarriba J, et al. Diagnosis and treatment of speech disorders in children with Moebius syndrome[J]. Int J Pediatr Otorhinolaryngol, 2020, 138: 110316.
[14]
马茜,贾红艳,常青林,等. Möbius综合征的临床特征及全外显子组测序研究[J]. 中华眼科杂志202258(6):441-447.
[15]
Sugarman GI, Stark HH. Möbius syndrome with Poland′sanomaly[J]. J Med Genet, 1973, 10(2): 192-196.
[16]
Tomas-Roca L, Tsaalbi-Shtylik A, Jansen JG, et al. De novo mutations in PLXND1 and REV3L cause Möbius syndrome[J]. Nat Commun, 2015, 6: 7199.
[17]
Vaccari CM, Tassano E, Torre M, et al. Assessment of copy number variations in 120 patients with Poland syndrome[J]. BMC Med Genet, 2016, 17(1): 89.
[18]
Glass GE, Mohammedali S, Sivakumar B, et al. Poland-Möbius syndrome: a case report implicating a novel mutation of the PLXND1 gene and literature review[J]. BMC Pediatrics, 2022, 22(1): 745.
[19]
Tischfield MA, Baris HN, Wu C, et al. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance[J]. Cell, 2010, 140(1): 74-87.
[20]
Cheng L, Desai J, Miranda CJ, et al. Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling[J]. Neuron, 2014, 82(2): 334-349.
[21]
Zhou TC, Duan WH, Fu XL, et al. Identification of a novel CHN1 p. (Phe213Val) variant in a large Han Chinese family with congenital Duane retraction syndrome[J]. Sci Rep, 2020, 10(1): 16225.
[22]
Azzedine H, Bolino A, Taïeb T, et al. Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma[J]. Am J Hum Genet, 2003, 72(5): 1141-1153.
[23]
Al-Chalabi A, Andersen PM, Nilsson P, et al. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis[J]. Hum Mol Genet, 1999, 8(2): 157-164.
[24]
Rebelo AP, Abrams AJ, Cottenie E, et al. Cryptic amyloidogenic elements in the 3′ UTRs of neurofilament genes trigger axonal neuropathy[J]. Am J Hum Genet, 2016, 98(4): 597-614.
[25]
Glinton KE, Hurst ACE, Bowling KM, et al. Phenotypic expansion of the BPTF-related neurodevelopmental disorder with dysmorphic facies and distal limb anomalies[J]. Am J Med Genet A, 2021, 185(5): 1366-1378.
[1] 吴卫照, 肖贞, 袁转苹, 吴丹, 李源斌. MTO1基因变异致联合氧化磷酸化缺陷症10型患儿的临床和遗传学分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 719-727.
[2] 骞佩, 包瑛, 黄惠梅, 韩艳, 索磊, 杨楠, 安小敏, 党佳文. 常染色体隐性遗传多囊肾病患儿PKHD1基因变异的临床表型及基因型[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 540-547.
[3] 张丽娜, 李东至, 韩瑾, 潘敏, 雷婷缨, 符芳, 甄理. 胎龄为16~18周系统胎儿超声检查联合胎儿全外显子组测序技术的产前诊断价值[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(05): 559-565.
[4] 徐建波, 周星宇, 谢琴琴, 欧信德, 叶锦宁, 彭建军, 吴晖. 结直肠癌奥沙利铂耐药关键基因的生物信息学分析及意义[J]. 中华普通外科学文献(电子版), 2020, 14(05): 349-354.
[5] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[6] 桑田, 赵磊, 佟琰, 欧阳清, 陈香美. 急性肾损伤的内质网应激相关基因和通路的生物信息学分析[J]. 中华肾病研究电子杂志, 2024, 13(01): 26-33.
[7] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[8] 洪权. 高通量测序在慢性肾脏病诊治中应用[J]. 中华肾病研究电子杂志, 2020, 09(04): 192-192.
[9] 赵军, 黄晓生, 彭诗茗, 祝天辉, 贺温玲, 曾映虾, 范先明, 范宝剑. 利用全外显子组测序法筛选Leber先天性黑矇一家系候选致病基因的实验研究[J]. 中华眼科医学杂志(电子版), 2017, 07(01): 18-24.
[10] 郑皓宇, 张慕玲, 李晨星, 周晓燕. 染色体微阵列分析联合全外显子组测序在先天性泌尿系统发育异常胎儿诊断中的应用[J]. 中华诊断学电子杂志, 2022, 10(01): 36-41.
阅读次数
全文


摘要