切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (05) : 257 -261. doi: 10.3877/cma.j.issn.2095-2007.2022.05.001

述评

关注眼用微针体系的构建策略
耿晨昕1, 于昊哲2, 冯云2,()   
  1. 1. 100191 北京大学医学部口腔医学院2018级本科生
    2. 100191 北京大学第三医院眼科 北京大学医学部医学技术研究院
  • 收稿日期:2022-02-01 出版日期:2022-10-28
  • 通信作者: 冯云
  • 基金资助:
    国家自然科学基金项目(81700799;82070926)

Pay attention to the construction strategies of ophthalmic microneedle system

Chenxin Geng1, Haozhe Yu2, Yun Feng2,()   

  1. 1. Bachelor′s degree in 2018, Peking University School of Stomatology, Peking University Health Science Center, Beijing 100191, China
    2. Department of Ophthalmology, Peking University Third Hospital, Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
  • Received:2022-02-01 Published:2022-10-28
  • Corresponding author: Yun Feng
引用本文:

耿晨昕, 于昊哲, 冯云. 关注眼用微针体系的构建策略[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 257-261.

Chenxin Geng, Haozhe Yu, Yun Feng. Pay attention to the construction strategies of ophthalmic microneedle system[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(05): 257-261.

眼用微针是一种新型的眼部给药系统,由微米级别的针阵列组成。与局部滴眼和玻璃体内注射等传统给药方式相比,眼用微针可以绕过眼表屏障,实现无痛和高效的药物递送。近年来,微针在构建微创给药途径方面取得了较大的进展,但国内对此的研究仍较少。本文中笔者综合相关文献,对眼用微针的优势、体系构建策略、安全性及存在的问题进行述评。

Ophthalmic microneedles is a novel system drug formulations for eyes, and consists of micron-scale needle arrays. Compared with traditional approaches such as topical and intravitreal routes, microneedles achieve more painless and efficient drug delivery, owing to its ability to overcome the barrier function of ocular tissues. Recently, the research about microneedles constructing new ways of drug delivery has been making progress. However, at present domestic researcher paid little attention to it. The recent progress onthe advantages of microneedles, the system construction strategy, security and existing problems were reviewed in this paper.

[1]
Yeh S, Khurana RN, Shah M, et al. Efficacy and Safety of Suprachoroidal CLS-TA for Macular Edema Secondary to Noninfectious Uveitis: Phase 3 Randomized Trial[J]. Ophthalmology, 2020, 127(7): 948-955.
[2]
Gerstel MS, Place VA. Drug delivery device: US, US3964482A[P/OL]. 1976-06-22.
[3]
Henry S, McAllister DV, Allen MG, et al. Microfabricated Microneedles: A Novel Approach to Transdermal Drug Delivery[J]. Journal of Pharmaceutical Sciences, 1998, 87(8): 922-925.
[4]
Jiang J, Gill HS, Ghate D, et al. Coated microneedles for drug delivery to the eye[J]. Investigative Ophthalmology & Visual Science, 2007, 48(9): 4038-4043.
[5]
Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of beta-blocking agents III: In vitro-in vivo correlations[J]. J Pharm Sci, 1983, 72(11): 1279-1281.
[6]
Hughes PM, Olejnik O, Chang-Lin JE, et al. Topical and systemic drug delivery to the posterior segments[J]. Adv Drug Deliv Rev, 2005, 57(14): 2010-2032.
[7]
Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug delivery[J]. The AAPS journal, 2010, 12(3): 348-360.
[8]
Jiang J, Moore JS, Edelhauser HF, et al. Intrascleral Drug Delivery to the Eye Using Hollow Microneedles[J]. Pharmaceutical Research, 2009, 26(2): 395-403.
[9]
Mahadevan G, Sheardown H, Selvaganapathy P. PDMS embedded microneedles as a controlled release system for the eye[J]. Journal of Biomaterials Applications, 2012, 28(1): 20-27.
[10]
Patel SR, Lin ASP, Edelhauser HF, et al. Suprachoroidal drug delivery to the back of the eye using hollow microneedles[J]. Pharmaceutical Research, 2011, 28(1): 166-176.
[11]
Schoenwald R. Ocular drug delivery: Pharmacokinetic considerations[J]. Clin Pharmacokinet, 1990, 18(4): 255-269.
[12]
Mikkelson TJ, Chrai SS, Robinson JR. Competitive inhibition of drug-protein interaction in eye fluids and tissues[J]. Journal of Pharmaceutical Sciences, 2010, 62(12): 1942-1945.
[13]
Kompella UB, Kadam RS, Lee VH. Recent advances in ophthalmic drug delivery[J]. Ther Deliv, 2010, 1(3): 435-456.
[14]
Kansara V, Mitra AK. Evaluation of an Ex Vivo Model Implication for Carrier-Mediated Retinal Drug Delivery[J]. Current Eye Research, 2006, 31(5): 415-426.
[15]
Ranta VP, Mannermaa E, Lummepuro K, et al. Barrier analysis of periocular drug delivery to the posterior segment[J]. Journal of Controlled Release, 2010, 148(1): 42-48.
[16]
Einmahl S, Savoldelli M, D'Hermies F, et al. Evaluation of a novel biomaterial in the suprachoroidal space of the rabbit eye[J]. Investigative Ophthalmology and Visual Science, 2002, 43(5): 1533-1539.
[17]
Rai UDJP, Young SA, Thrimawithana TR, et al. The suprachoroidal pathway: a new drug delivery route to the back of the eye[J]. Drug Discovery Today, 2015, 20(4): 491-495.
[18]
Ínaltekin A, Bozkurt E, Kvrak Y. Factors Associated with Pain Level in Patients Receiving Intravitreal Injection[J]. J Curr Ophthalmol, 2021, 33(3): 323-329.
[19]
Gill HS, Denson DD, Burris BA, et al. Effect of microneedle design on pain in human volunteers[J]. Clin J Pain, 2008, 24(7): 585-594.
[20]
Bal SM, Caussin J, Pavel S, et al. In vivo assessment of safety of microneedle arrays in human skin[J]. European Journal of Pharmaceutical Sciences, 2008, 35(3): 193-202.
[21]
Aoyagi S, Izumi H, Isono Y, et al. Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle[J]. Sensors and Actuators a-Physical, 2007, 139(1-2): 293-302.
[22]
Parker ER, Rao MP, Turner KL, et al. Bulk micromachined titanium microneedles[J]. Journal of Microelectromechanical Systems, 2007, 16(2): 289-295.
[23]
Kim YC, Park J-H, Prausnitz MR. Microneedles for drug and vaccine delivery[J]. Advanced Drug Delivery Reviews, 2012, 64(14): 1547-1568.
[24]
Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery[J]. Journal of Controlled Release, 2007, 117(2): 227-237.
[25]
Kim SW, Ha BJ, Kim EK, et al. The Effect of Topical Bevacizumab on Corneal Neovascularization[J]. Ophthalmology, 2008, 115(6): e33-e38.
[26]
Kim YC, Grossniklaus HE, Edelhauser HF, et al. Intrastromal delivery of bevacizumab using microneedles to treat corneal neovascularization[J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7376-7386.
[27]
Song HB, Lee KJ, Seo IH, et al. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery[J]. J Control Release, 2015, 209: 272-279.
[28]
Khandan O, Kahook MY, Rao MP. Fenestrated microneedles for ocular drug delivery[J]. Sensors and Actuators B: Chemical, 2016, 223: 15-23.
[29]
Patel SR, Berezovsky DE, McCarey BE, et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 4433-4441.
[30]
Chiang B, Kim YC, Edelhauser HF, et al. Circumferential flow of particles in the suprachoroidal space is impeded by the posterior ciliary arteries[J]. Exp Eye Res, 2016, 145: 424-431.
[31]
Jung JH, Chiang B, Grossniklaus HE, et al. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle[J]. J Control Release, 2018, 277: 14-22.
[32]
Gilger BC, Abarca EM, Salmon JH, et al. Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles[J]. Invest Ophthalmol Vis Sci, 2013, 54(4): 2483-2492.
[33]
Chiang B, Kim YC, Doty AC, et al. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma[J]. Journal of Controlled Release, 2016, 228: 48-57.
[34]
Chae JJ, Jung JH, Zhu W, et al. Drug-Free, Nonsurgical Reduction of Intraocular Pressure for Four Months after Suprachoroidal Injection of Hyaluronic Acid Hydrogel[J]. Adv Sci (Weinh), 2020, 8(2): 2001908-2001908.
[35]
Olsen TW, Feng X, Wabner K, et al. Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model[J]. Invest Ophthalmol Vis Sci, 2011, 52(7): 4749-4756.
[36]
Thakur RRS, Tekko IA, Al-Shammari F, et al. Rapidly dissolving polymeric microneedles for minimally invasive intraocular drug delivery[J]. Drug Deliv Transl Re, 2016, 6(6): 800-815.
[37]
Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery[J]. Journal of Controlled Release, 2005, 104(1): 51-66.
[38]
Wang QL, Zhu DD, Chen Y, et al. A fabrication method of microneedle molds with controlled microstructures[J]. Mat Sci Eng C-Mater, 2016, 65: 135-142.
[39]
Mogusala V, Venisetty RK. Fabrication of Microneedle Molds and Polymer Based Biodegradable Microneedle Patches: A Novel Method[J]. American Journal of Drug Delivery and Therapeutics, 2015, 2: 1-12.
[40]
Than A, Liu C, Chang H, et al. Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery[J]. Nature Communications, 2018, 9(1): 4433.
[41]
Wu Y, Vora LK, Wang Y, et al. Long-acting nanoparticle-loaded bilayer microneedles for protein delivery to the posterior segment of the eye[J]. Eur J Pharm Biopharm, 2021, 165: 306-318.
[42]
Palakurthi NK, Correa ZM, Augsburger JJ, et al. Toxicity of a biodegradable microneedle implant loaded with methotrexate as a sustained release device in normal rabbit eye: a pilot study[J]. J Ocul Pharmacol Ther, 2011, 27(2): 151-156.
[43]
Roy G, Galigama RD, Thorat VS, et al. Amphotericin B containing microneedle ocular patch for effective treatment of fungal keratitis[J]. Int J Pharm, 2019, 572: 118808.
[44]
Park S, Lee K, Kang H, et al. Single Administration of a Biodegradable, Separable Microneedle Can Substitute for Repeated Application of Eyedrops in the Treatment of Infectious Keratitis[J]. Adv Healthc Mater, 2021, 10(11): e2002287.
[45]
Cui M, Zheng M, Wiraja C, et al. Ocular Delivery of Predatory Bacteria with Cryomicroneedles Against Eye Infection[J]. Adv Sci (Weinh), 2021, 8(21): e2102327.
[46]
Donnelly RF, Singh TR, Garland MJ, et al. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery[J]. Adv Funct Mater, 2012, 22(23): 4879-4890.
[47]
Turner JG, White LR, Estrela P, et al. Hydrogel-Forming Microneedles: Current Advancements and Future Trends[J]. Macromol Biosci, 2021, 21(2): e2000307.
[48]
Amer M, Chen RK. Self-Adhesive Microneedles with Interlocking Features for Sustained Ocular Drug Delivery[J]. Macromolecular Bioscience, 2020, 20(6): 2000089.
[49]
Fang G, Yang X, Wang Q, et al. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases[J]. Mater Sci Eng C Mater Biol Appl, 2021, 127: 112212.
[50]
Kim YC, Edelhauser HF, Prausnitz MR. Targeted Delivery of Antiglaucoma Drugs to the Supraciliary Space Using Microneedles[J]. Investigative Ophthalmology & Visual Science, 2014, 55(11): 7387-7397.
[51]
Chehab HE, Le Corre A, Agard E, et al. Effect of Topical Pressure-Lowering Medication on Prevention of Intraocular Pressure Spikes after Intravitreal Injection[J]. European Journal of Ophthalmology, 2012, 23(3): 277-283.
[52]
Matthews A, Hutnik C, Hill K, et al. Indentation and needle insertion properties of the human eye[J]. Eye (Lond), 2014, 28(7): 880-887.
[53]
Chung SH, Mollhoff IN, Mishra A, et al. Host Immune Responses after Suprachoroidal Delivery of AAV8 in Nonhuman Primate Eyes[J]. Hum Gene Ther, 2021, 32(13-14): 682-693.
[54]
Matthaei M, Meng H, Bhutto I, et al. Systematic assessment of microneedle injection into the mouse cornea[J]. Eur J Med Res, 2012, 17(1): 19.
[55]
Goldstein DA. Achieving drug delivery via the suprachoroidal space: Use of the suprachoroidal space for drug delivery may achieve sustained delivery of therapeutics close to the source of retinal or choroidal pathology[J]. Retina Today, 2014, 14: 82-83.
[1] 尹格平, 陈铭, 杨树君, 李娟, 朱彤宇, 赵晓利. 射频热凝固治疗子宫肌瘤的远期疗效[J]. 中华妇幼临床医学杂志(电子版), 2013, 09(02): 155-159.
[2] 尹格平, 提松梅, 杨树君, 陈铭, 赵晓利, 朱彤宇, 李娟, 安琳. 探讨高强度聚焦超声治疗女性外阴上皮内非瘤样病变的方法及疗效[J]. 中华妇幼临床医学杂志(电子版), 2010, 06(04): 265-269.
[3] 尹格平, 李娟, 朱彤宇, 何宁, 杨树君, 陈铭, 韩燕, 李秀云. 射频热凝固治疗不同程度子宫颈上皮内瘤样病变的价值[J]. 中华妇幼临床医学杂志(电子版), 2007, 03(02): 68-f4.
[4] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[5] 齐红哲, 彭军, 封国超, 刘光波, 赵宋华, 白克文, 周家宁, 李双成, 周雪峰, 陈华. 将加速康复外科理念应用于跟腱断裂微创治疗的效果观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 217-222.
[6] 陈立华, 徐如祥, 李运军, 李文德, 于斌, 高进宝. Ⅱ型神经纤维瘤病的微创手术治疗[J]. 中华脑科疾病与康复杂志(电子版), 2019, 09(01): 10-14.
[7] 倪传飞. 超微针刀治疗臀上皮神经卡压综合征临床观察[J]. 中华针灸电子杂志, 2018, 07(02): 45-48.
[8] 高子昂, 段天骄, 谭玉勇, 刘德良, 段天英. 消化内镜隧道技术国内外研究现状及发展趋势的可视化分析[J]. 中华胃肠内镜电子杂志, 2023, 10(03): 159-166.
[9] 张波, 柴宁莉, 李隆松, 高飞, 令狐恩强. 胰腺液体积聚的微创治疗进展[J]. 中华胃肠内镜电子杂志, 2022, 09(01): 41-44.
[10] 周雪涛, 谢泽新, 陈孟晖, 梁政, 杨杨, 张国亮, 张东升. 多发性肋骨骨折微创手术治疗体会[J]. 中华胸部外科电子杂志, 2019, 06(01): 6-11.
阅读次数
全文


摘要