切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (05) : 298 -304. doi: 10.3877/cma.j.issn.2095-2007.2019.05.006

论著

建立在体角膜内皮细胞损伤后再生动物模型的实验研究
苏冠羽1, 韦振宇1, 王乐滢1, 梁庆丰1,()   
  1. 1. 100005 首都医科大学附属北京同仁医院 北京同仁眼科中心 北京市眼科研究所 眼科学与视觉科学北京市重点实验室
  • 收稿日期:2019-08-16 出版日期:2019-10-28
  • 通信作者: 梁庆丰
  • 基金资助:
    国家自然科学基金面上项目(81470607); 北京市卫生系统高层次卫生技术人才培养基金(2014-3-016); 2017年北京市百千万人才工程培养项目(2017A10)

Experimental study on regeneration of corneal endothelial cells in vivo

Guanyu Su1, Zhenyu Wei1, Leying Wang1, Qingfeng Liang1,()   

  1. 1. Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, 100005, China
  • Received:2019-08-16 Published:2019-10-28
  • Corresponding author: Qingfeng Liang
引用本文:

苏冠羽, 韦振宇, 王乐滢, 梁庆丰. 建立在体角膜内皮细胞损伤后再生动物模型的实验研究[J]. 中华眼科医学杂志(电子版), 2019, 09(05): 298-304.

Guanyu Su, Zhenyu Wei, Leying Wang, Qingfeng Liang. Experimental study on regeneration of corneal endothelial cells in vivo[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(05): 298-304.

目的

探讨建立在体角膜内皮损伤动物模型的方法及其损伤后再生的潜能。

方法

选取2周龄的正常六角龙鱼30只。采用数字表法随机分为正常观察组、NaOH损伤组及机械损伤组,各10只。采用活体共聚焦显微镜检查、组织病理学检查、茜素红-曲利苯蓝内皮染色和氯化金角膜神经染色等方法观察。对正常观察组六角龙鱼,观察其眼球和角膜正常结构;通过NaoH溶液和器械两种方法损伤角膜内皮层,建立角膜内皮细胞损伤模型,观察其角膜内皮细胞再生的情况。对4个时间点角膜内皮细胞的密度进行正态性检验和方差齐性检验,使用重复测量方差分析对不同组别、不同时间点角膜内皮细胞密度的均值进行比较,事前进行Mauchly球形检验,如果检验结果显著,采用多元方差分析,否则选用校正自由的F检验。

结果

六角龙鱼角膜厚度约为(75.75±7.51)μm,角膜上皮细胞层较厚,约占角膜厚度的一半。经NaoH溶液和器械两种方法损伤其角膜内皮细胞后,六角龙鱼角膜内皮细胞密度明显降低。NaoH损伤组和机械损伤组在不同时间点,六角龙鱼角膜内皮细胞密度的比较,具有统计学意义(F=31.38,51.77;P<0.05)。而各个时间点间的差异,两组均无统计学意义(F=1.37,2.67,0.70,4.14;P>0.05)。在损伤后3 d时,NaoH损伤组六角龙鱼角膜内皮细胞的密度为(128±14)个/mm2,机械损伤组为(113±11)个/mm2。与损伤前比较,其角膜内皮细胞密度的差异均有统计学意义(t=19.39,8.78;P<0.05);在损伤后7 d时,NaoH损伤组六角龙鱼角膜内皮细胞的密度为(157±20)个/mm2,机械损伤组为(169±19)个/mm2。与损伤后3 d时比较,其角膜内皮细胞密度均有所恢复,差异均有统计学意义(t=3.75,8.07;P<0.05);在损伤后14 d时,可见NaoH损伤组六角龙鱼角膜内皮细胞的密度为(198±17)个/mm2,机械损伤组为(223±17)个/mm2。与损伤后3 d时和7 d时比较,均有明显恢复,差异均有统计学意义(t=10.05,8.07;P<0.05)和(t=4.94,6.70;P<0.05)。随着时间延长,两组六角龙鱼角膜内皮细胞的密度均逐渐恢复。在伤后14 d时,其角膜内皮细胞形态、大小和密度均基本恢复正常状态。

结论

使用NaoH溶液和器械两种方法均可成功建立六角龙鱼角膜内皮细胞损伤的动物模型。初步观察结果表明,其角膜内皮细胞具有一定的再生潜能。此方法可为角膜内皮细胞损伤后再生研究提供一种新的动物模型。

Objective

This study was aim to explore the method of establishing animal model of corneal endothelial injury and the potential of endothelial regeneration after injury.

Methods

30 normal axolotls of 2 weeks old were selected. They were divided into normal observation group, NaoH-injured group and mechanical-injured group with 10 axolotls each. In vivo confocal microscopy, histopathological examination, alizarin red-trichlorobenzene blue endothelial staining and gold chloride corneal nerve staining were used to observe. In the normal observation group, the normal structure of the eye and cornea was observed. Corneal endothelial cells were damaged by NaoH solution and mechanics, and the endothelial cell injury model was established to observe the regeneration of corneal endothelial cells. The corneal endothelial cell density at four time points was tested by normality test and homogeneity test of variance. The mean corneal endothelial cell density at different time points in different groups was compared by repeated measurement variance analysis. Mauchly spherical test was performed beforehand. According to the test results, if significant, the results of multivariate analysis of variance are adopted; otherwise, the correction free F test is selected.

Results

The corneal thickness of axolotls was about (75.75±7.51) μm, and the corneal epithelial cell layer was about half of the corneal thickness. After the corneal endothelial cells were damaged by NaoH solution and mechanic, the density of corneal endothelial cells decreased significantly. The density of corneal endothelial cells in NaoH-injured group and mechanical-injured group at different time points was significantly different (F=31.38, 51.77; P<0.05). There was no significant difference between NaoH-injured group and mechanical-injured group at each time point (t= 1.37, 2.67, 0.70, 4.14; P>0.05). At 3 days after injury, the density of corneal endothelial cells in NaoH-injured group and mechanical-injured group were (128±14)/mm2 and (113±11)/mm2. And the density of corneal endothelial cells in NaoH-injured group was (157±20)/mm2 and that in mechanical-injured group was (169±19)/mm2 at 7 days after injury (t=19.39, 8.78; P<0.05). Compared with 3 days after injury, the density of corneal endothelial cells recovered with statistical significance (t=3.75, 8.07; P<0.05). At 14 days after injury, the density of corneal endothelial cells in NaoH injury group was (198±17)/mm2, and that in mechanical injury group was (223±17)/mm2. Compared with 3 days and 7 days after injury, there were significant differences (t=10.05, 8.07; P<0.05) and (t=4.94, 6.70; P<0.05). Over time, the density of corneal endothelial cells in both groups was gradually recovered. At 14 days after injury, the morphology, size and density of corneal endothelial cells almost turned back to normal.

Conclusions

Both NaoH solution and mechanic can successfully establish the animal model of corneal endothelial cell injury in axolotls. The preliminary results showed that the endothelial cells had a certain regeneration potential. This method could provide a new animal model for the study of corneal endothelial cell regeneration after injury.

图2 六角龙鱼正常角膜活体共聚焦显微镜下显微结构图像 图2A显示活体角膜上皮层(×800);图2B显示活体角膜上皮下神经(×800);图2C显示活体基质层角膜神经(×800);图2D显示活体角膜内皮细胞(×800);图2E显示茜素红-曲利苯蓝染色下的角膜内皮细胞(×400);图2F显示神经氯化金染色下的角膜浅基质层神经(×400)
图4 六角龙鱼角膜内皮损伤后不同时间点活体共聚焦显微镜下的显微图像 图4A、4B、4C、4D显示NaoH损伤组角膜内皮经损伤后不同时间点活体共聚焦显微镜下观察内皮细胞形态及密度变化(×800);图4E、4F、4G、4H显示机械损伤组角膜内皮经损伤后活体共聚焦显微镜观察内皮细胞形态及密度变化(×800)
图5 两个角膜内皮损伤组六角龙鱼角膜内皮细胞密度损伤后随时间变化的情况
表1 正常观察组与损伤前后NaoH损伤组及机械损伤组六角龙鱼角膜内皮细胞密度的比较(±s,个/mm2)
[1]
Treffers WF. Human corneal endothelial wound repair. In vitro and in vivo[J]. Ophthalmology, 1982, 89(6): 605-613.
[2]
Joyce NC, Zhu CC. Human corneal endothelial cell proliferation: potential for use in regenerative medicine[J]. Cornea, 2004, 23(8 Suppl): S8-S19.
[3]
Chen J, Li Z, Zhang L, et al. Descemet's Membrane Supports Corneal Endothelial Cell Regeneration in Rabbits[J], 2017, 7(1): 6983.
[4]
Bostan C, Theriault M, Forget KJ, et al. In Vivo Functionality of a Corneal Endothelium Transplanted by Cell-Injection Therapy in a Feline Model[J]. Invest Ophthalmol Vis Sci, 2016, 57(4): 1620-1634.
[5]
Schwartzkopff J, Bredow L, Mahlenbrey S, et al. Regeneration of corneal endothelium following complete endothelial cell loss in rat keratoplasty[J]. Mol Vis, 2010, 16: 2368-2375.
[6]
Cornell LE, Wehmeyer JL, Johnson AJ, et al. Magnetic Nanoparticles as a Potential Vehicle for Corneal Endothelium Repair[J]. Mil Med, 2016, 181(5 Suppl): 232-239.
[7]
Nakahori Y, Katakami C, Yamamoto M. Corneal endothelial cell proliferation and migration after penetrating keratoplasty in rabbits[J]. Jpn J Ophthalmol, 1996, 40(2): 271-278.
[8]
Choi SO, Jeon HS, Hyon JY, et al. Recovery of Corneal Endothelial Cells from Periphery after Injury[J]. PLoS One, 2015, 10(9): e0138076.
[9]
牛国桢,高佳妮,颜俊卿,等. 区域性角膜内皮损伤动物模型的建立[J]. 中华眼外伤职业眼病杂志201840(10): 737.
[10]
Ide T, Yoo S H, Kymionis GD, et al. Descemet-stripping automated endothelial keratoplasty (DSAEK): effect of nontoxic gentian violet marking pen on DSAEK donor tissue viability by using vital dye assay[J]. Cornea, 2008, 27(5): 562-564.
[11]
刘会娟,黄悦,张琰,等. 大鼠干眼模型的建立及其角膜神经的改变[J]. 眼科新进展201434(5): 422-427.
[12]
廉井财,顾丽琼,石海云,等. 兔眼LASIK手术前后角膜表面超微结构变化和角膜神经染色观察[J]. 中华实验眼科杂志201028(2): 109-113.
[13]
Joyce NC. Proliferative capacity of corneal endothelial cells[J]. Experimental Eye Research, 2012, 95(1): 0-23.
[14]
姜雪,李昕悦,孙婉彤,等. 角膜内皮细胞的检测、受损因素及治疗新进展[J]. 现代生物医学进展2018(1): 195-200.
[15]
Joyce NC, Harris DL. Decreasing expression of the G1-phase inhibitors, p21Cip1 and p16INK4a, promotes division of corneal endothelial cells from older donors[J]. Mol Vis, 2010, 16: 897-906.
[16]
Okumura N, Koizumi N, Ueno M, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue[J]. Am J Pathol, 2012, 181(1): 268-277.
[17]
Kaimori A, Potter J, Kaimori JY, et al. Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro[J]. J Biol Chem, 2007, 282(30): 22089-22101.
[18]
Heur M, Jiao S, Schindler S, et al. Regenerative potential of the zebrafish corneal endothelium[J]. Exp Eye Res, 2013, 106: 1-4.
[19]
Yokoyama H, Kudo N, Todate M. Skin regeneration of amphibians: A novel model for skin regeneration as adults[J], 2018, 60(6): 316-325.
[20]
Farkas JE, Freitas PD, Bryant DM, et al. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration[J], 2016, 143(15): 2724-2731.
[21]
Haas BJ, Whited JL. Advances in Decoding Axolotl Limb Regeneration[J]. Trends Genet, 2017, 33(8): 553-565.
[22]
Fei JF, Schuez M, Knapp D, et al. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration[J]. Proc Natl Acad Sci U S A, 2017, 114(47): 12501-12506.
[23]
Nacu E, Gromberg E, Oliveira CR, et al. FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration[J]. Nature, 2016, 533(7603): 407-410.
[24]
Monaghan JR, Epp LG, Putta S, et al. Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration[J]. BMC Biol, 2009, 7: 1.
[25]
Nguyen M, Singhal P, Piet JW, et al. Retinoic acid receptor regulation of epimorphic and homeostatic regeneration in the axolotl[J], 2017, 144(4): 601-611.
[26]
Tica J, Didangelos A. Comparative Transcriptomics of Rat and Axolotl After Spinal Cord Injury Dissects Differences and Similarities in Inflammatory and Matrix Remodeling Gene Expression Patterns[J]. Front Neurosci, 2018, 12: 808.
[27]
Tazaki A, Tanaka EM, Fei JF. Salamander spinal cord regeneration: The ultimate positive control in vertebrate spinal cord regeneration[J]. Dev Biol, 2017, 432(1): 63-71.
[28]
Vieira W, Mccusker C. Regenerative Models for the Integration and Regeneration of Head Skeletal Tissues[J]. International Journal of Molecular Sciences, 2018, 19(12): E3752.
[29]
Bloomekatz J, Galvez-Santisteban M, Chi NC. Myocardial plasticity: cardiac development, regeneration and disease[J]. Curr Opin Genet Dev, 2016, 40: 120-130.
[30]
Sader F, Denis JF, Roy S. Tissue regeneration in dentistry: Can salamanders provide insight?[J], 2018, 24(4): 509-517.
[31]
Brunst VV. Destructive effects of strictly local irradiation of the eye of the adult axolotl (Siredon mexicanum)[J]. Radiat Res, 1969, 39(1): 26-35.
[32]
Stone LS. An investigation recording all salamanders which can and cannot regenerate a lens from the dorsal iris[J]. J Exp Zool, 1967, 164(1): 87-103.
[33]
Suetsugu-Maki R, Maki N, Nakamura K, et al. Lens regeneration in axolotl: new evidence of developmental plasticity[J]. BMC Biol, 2012, 10: 103.
[34]
Roddy M, Fox TP, Mcfadden JP, et al. A comparative proteomic analysis during urodele lens regeneration[J]. Biochem Biophys Res Commun, 2008, 377(1): 275-279.
[35]
Del Rio-Tsonis K, Washabaugh CH, Tsonis PA. Expression of pax-6 during urodele eye development and lens regeneration[J]. Proc Natl Acad Sci U S A, 1995, 92(11): 5092-5096.
[36]
Brunst VV. Successive Changes in the Cornea of Young Axolotl (Siredon mexicanum) after X-Irradiation[J]. Radiation Research, 1963, 20(3): 325-340.
[1] 黄钰清, 武杜杜, 潘菲, 王俊康, 钟兆明, 黎檀实, 吕发勤. 掌上超声在枪弹伤致髂动脉破裂大出血建模中的应用研究[J]. 中华医学超声杂志(电子版), 2022, 19(10): 1112-1117.
[2] 李传举, 刘林月, 王美, 李昕, 韩祥辉, 贾海永. 乙型肝炎病毒感染模型研究进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 361-365.
[3] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[4] 赵欣, 赵晴, 张华. 角膜地形图引导个性化切削屈光术矫正近视眼和散光的早期临床疗效[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 210-214.
[5] 唐凯, 刘正峰, 宋佳蔚, 卢秀珍. 角膜巩膜干凹斑的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 231-235.
[6] 崔梦凡, 贺瑞, 李晓娜, 陈维毅, 宋耀文. 角膜生物力学评估参数的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 236-240.
[7] 江卓婷, 高妍, 李春晖. 相干光断层扫描在角膜屈光手术术前筛查中应用的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 247-251.
[8] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[9] 陈灏楠, 肖伟. 透明角膜切口对白内障术后角膜散光的影响及其精准测量的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 172-176.
[10] 曹宇, 苗泽群, 王凯, 王乐今. 关注交联技术的发展及巩膜交联技术在控制近视发展中的潜在应用价值[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 65-69.
[11] 陈乐然, 袁翌斐, 陈跃国. 儿童圆锥角膜发病机制与角膜胶原交联术适应证及治疗研究的新进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 50-54.
[12] 万修华. 角膜移植术后白内障吸除联合张力环及后房型人工晶状体植入术[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 0-.
[13] 萨仁高娃, 张英霞, 邓伟, 闫诺, 樊宁. 超声引导下鼠肝消融术后组织病理特征的变化规律及影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 394-398.
[14] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[15] 高飞, 李惠凯, 冯秀雪, 杜晨, 韩珂, 柴宁莉, 令狐恩强. 3%聚桂醇消融动物囊性肿瘤模型的有效性和安全性研究[J]. 中华胃肠内镜电子杂志, 2023, 10(01): 31-36.
阅读次数
全文


摘要