[1] |
Treffers WF. Human corneal endothelial wound repair. In vitro and in vivo[J]. Ophthalmology, 1982, 89(6): 605-613.
|
[2] |
Joyce NC, Zhu CC. Human corneal endothelial cell proliferation: potential for use in regenerative medicine[J]. Cornea, 2004, 23(8 Suppl): S8-S19.
|
[3] |
Chen J, Li Z, Zhang L, et al. Descemet's Membrane Supports Corneal Endothelial Cell Regeneration in Rabbits[J], 2017, 7(1): 6983.
|
[4] |
Bostan C, Theriault M, Forget KJ, et al. In Vivo Functionality of a Corneal Endothelium Transplanted by Cell-Injection Therapy in a Feline Model[J]. Invest Ophthalmol Vis Sci, 2016, 57(4): 1620-1634.
|
[5] |
Schwartzkopff J, Bredow L, Mahlenbrey S, et al. Regeneration of corneal endothelium following complete endothelial cell loss in rat keratoplasty[J]. Mol Vis, 2010, 16: 2368-2375.
|
[6] |
Cornell LE, Wehmeyer JL, Johnson AJ, et al. Magnetic Nanoparticles as a Potential Vehicle for Corneal Endothelium Repair[J]. Mil Med, 2016, 181(5 Suppl): 232-239.
|
[7] |
Nakahori Y, Katakami C, Yamamoto M. Corneal endothelial cell proliferation and migration after penetrating keratoplasty in rabbits[J]. Jpn J Ophthalmol, 1996, 40(2): 271-278.
|
[8] |
Choi SO, Jeon HS, Hyon JY, et al. Recovery of Corneal Endothelial Cells from Periphery after Injury[J]. PLoS One, 2015, 10(9): e0138076.
|
[9] |
牛国桢,高佳妮,颜俊卿,等. 区域性角膜内皮损伤动物模型的建立[J]. 中华眼外伤职业眼病杂志,2018,40(10): 737.
|
[10] |
Ide T, Yoo S H, Kymionis GD, et al. Descemet-stripping automated endothelial keratoplasty (DSAEK): effect of nontoxic gentian violet marking pen on DSAEK donor tissue viability by using vital dye assay[J]. Cornea, 2008, 27(5): 562-564.
|
[11] |
刘会娟,黄悦,张琰,等. 大鼠干眼模型的建立及其角膜神经的改变[J]. 眼科新进展,2014,34(5): 422-427.
|
[12] |
廉井财,顾丽琼,石海云,等. 兔眼LASIK手术前后角膜表面超微结构变化和角膜神经染色观察[J]. 中华实验眼科杂志,2010,28(2): 109-113.
|
[13] |
Joyce NC. Proliferative capacity of corneal endothelial cells[J]. Experimental Eye Research, 2012, 95(1): 0-23.
|
[14] |
姜雪,李昕悦,孙婉彤,等. 角膜内皮细胞的检测、受损因素及治疗新进展[J]. 现代生物医学进展,2018(1): 195-200.
|
[15] |
Joyce NC, Harris DL. Decreasing expression of the G1-phase inhibitors, p21Cip1 and p16INK4a, promotes division of corneal endothelial cells from older donors[J]. Mol Vis, 2010, 16: 897-906.
|
[16] |
Okumura N, Koizumi N, Ueno M, et al. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue[J]. Am J Pathol, 2012, 181(1): 268-277.
|
[17] |
Kaimori A, Potter J, Kaimori JY, et al. Transforming growth factor-beta1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro[J]. J Biol Chem, 2007, 282(30): 22089-22101.
|
[18] |
Heur M, Jiao S, Schindler S, et al. Regenerative potential of the zebrafish corneal endothelium[J]. Exp Eye Res, 2013, 106: 1-4.
|
[19] |
Yokoyama H, Kudo N, Todate M. Skin regeneration of amphibians: A novel model for skin regeneration as adults[J], 2018, 60(6): 316-325.
|
[20] |
Farkas JE, Freitas PD, Bryant DM, et al. Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration[J], 2016, 143(15): 2724-2731.
|
[21] |
Haas BJ, Whited JL. Advances in Decoding Axolotl Limb Regeneration[J]. Trends Genet, 2017, 33(8): 553-565.
|
[22] |
Fei JF, Schuez M, Knapp D, et al. Efficient gene knockin in axolotl and its use to test the role of satellite cells in limb regeneration[J]. Proc Natl Acad Sci U S A, 2017, 114(47): 12501-12506.
|
[23] |
Nacu E, Gromberg E, Oliveira CR, et al. FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration[J]. Nature, 2016, 533(7603): 407-410.
|
[24] |
Monaghan JR, Epp LG, Putta S, et al. Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration[J]. BMC Biol, 2009, 7: 1.
|
[25] |
Nguyen M, Singhal P, Piet JW, et al. Retinoic acid receptor regulation of epimorphic and homeostatic regeneration in the axolotl[J], 2017, 144(4): 601-611.
|
[26] |
Tica J, Didangelos A. Comparative Transcriptomics of Rat and Axolotl After Spinal Cord Injury Dissects Differences and Similarities in Inflammatory and Matrix Remodeling Gene Expression Patterns[J]. Front Neurosci, 2018, 12: 808.
|
[27] |
Tazaki A, Tanaka EM, Fei JF. Salamander spinal cord regeneration: The ultimate positive control in vertebrate spinal cord regeneration[J]. Dev Biol, 2017, 432(1): 63-71.
|
[28] |
Vieira W, Mccusker C. Regenerative Models for the Integration and Regeneration of Head Skeletal Tissues[J]. International Journal of Molecular Sciences, 2018, 19(12): E3752.
|
[29] |
Bloomekatz J, Galvez-Santisteban M, Chi NC. Myocardial plasticity: cardiac development, regeneration and disease[J]. Curr Opin Genet Dev, 2016, 40: 120-130.
|
[30] |
Sader F, Denis JF, Roy S. Tissue regeneration in dentistry: Can salamanders provide insight?[J], 2018, 24(4): 509-517.
|
[31] |
Brunst VV. Destructive effects of strictly local irradiation of the eye of the adult axolotl (Siredon mexicanum)[J]. Radiat Res, 1969, 39(1): 26-35.
|
[32] |
Stone LS. An investigation recording all salamanders which can and cannot regenerate a lens from the dorsal iris[J]. J Exp Zool, 1967, 164(1): 87-103.
|
[33] |
Suetsugu-Maki R, Maki N, Nakamura K, et al. Lens regeneration in axolotl: new evidence of developmental plasticity[J]. BMC Biol, 2012, 10: 103.
|
[34] |
Roddy M, Fox TP, Mcfadden JP, et al. A comparative proteomic analysis during urodele lens regeneration[J]. Biochem Biophys Res Commun, 2008, 377(1): 275-279.
|
[35] |
Del Rio-Tsonis K, Washabaugh CH, Tsonis PA. Expression of pax-6 during urodele eye development and lens regeneration[J]. Proc Natl Acad Sci U S A, 1995, 92(11): 5092-5096.
|
[36] |
Brunst VV. Successive Changes in the Cornea of Young Axolotl (Siredon mexicanum) after X-Irradiation[J]. Radiation Research, 1963, 20(3): 325-340.
|