[1] |
Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030[J]. Diabetes Res Clin Pract, 2011, 94(3): 311-321.
|
[2] |
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J]. Eye Vis (Lond), 2015, 2: 17.
|
[3] |
Ola MS, Nawaz MI, Siddiquei MM, et al. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy[J]. J Diabetes Complications, 2012, 26(1): 56-64.
|
[4] |
Semenza GL. HIF-1: using two hands to flip the angiogenic switch[J]. Cancer Metastasis Rev, 2000, 19(1-2): 59-65.
|
[5] |
Romero-Aroca P, Baget-Bernaldiz M, Pareja-Rios A, et al. Diabetic macular edema pathophysiology: vasogenic versus inflammatory[J]. J Diabetes Res, 2016, 2016: 2156273.
|
[6] |
Shibuya M, Yamaguchi S, Yamane A, et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family[J]. Oncogene, 1990, 5(4): 519-524.
|
[7] |
Gupta N, Mansoor S, Sharma A, et al. Diabetic retinopathy and VEGF[J]. Open Ophthalmology Journal, 2013, 7(1): 4-10.
|
[8] |
Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy[J]. Nat Med, 2009, 15(11): 1298-1306.
|
[9] |
Witmer AN, Vrensen GF, Van Noorden CJ, et al. Vascular endothelial growth factors and angiogenesis in eye disease[J]. Prog Retin Eye Res, 2003, 22(1): 1-29.
|
[10] |
Nicholson BP, Schachat AP. A review of clinical trials of anti-VEGF agents for diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2010, 248(7): 915-930.
|
[11] |
Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy[J]. Exp Diabetes Res, 2007, 2007: 95103.
|
[12] |
Adamis AP. Is diabetic retinopathy an inflammatory disease?[J]. Br J Ophthalmol, 2002, 86(4): 363-365.
|
[13] |
Koleva-Georgieva DN, Sivkova NP, Terzieva D. Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha and VEGF have influence on the development of diabetic retinopathy[J]. Folia Med (Plovdiv), 2011, 53(2): 44-50.
|
[14] |
Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[J]. Int J Mol Sci, 2018, 19(4): E942.
|
[15] |
Ben-Mahmud BM, Chan WH, Abdulahad RM, et al. Clinical validation of a link between TNF-alpha and the glycosylation enzyme core 2 GlcNAc-T and the relationship of this link to diabetic retinopathy[J]. Diabetologia, 2006, 49(9): 2185-2191.
|
[16] |
Fante RJ, Gardner TW, Sundstrom JM. Current and future management of diabetic retinopathy: a personalized evidence-based approach[J]. Diabetes Manag (Lond), 2013, 3(6): 481-494.
|
[17] |
Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy[J]. Diabetes, 2005, 54(5): 1559-1565.
|
[18] |
Roy MS, Roy A, Brown S. Increased urinary-free cortisol outputs in diabetic patients[J]. J Diabetes Complications, 1998, 12(1): 24-27.
|
[19] |
Hang H, Yuan S, Yang Q, et al. Multiplex bead array assay of plasma cytokines in type 2 diabetes mellitus with diabetic retinopathy[J]. Mol Vis, 2014, 20: 1137-1145.
|
[20] |
Loukovaara S, Piippo N, Kinnunen K, et al. NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy[J]. Acta Ophthalmol, 2017, 95(8): 803-808.
|
[21] |
Chen H, Zhang X, Liao N, et al. Assessment of biomarkers using multiplex assays in aqueous humor of patients with diabetic retinopathy[J]. BMC Ophthalmol, 2017, 17(1): 176.
|
[22] |
Koya D, King GL. Protein kinase C activation and the development of diabetic complications[J]. Diabetes, 1998, 47(6): 859-866.
|
[23] |
Semeraro F, Cancarini A, dell′ Omo R, et al. Diabetic retinopathy: vascular and inflammatory disease[J]. J Diabetes Res, 2015, 2015: 582060.
|
[24] |
Jonas JB, Jonas RA, Neumaier M, et al. Cytokine concentration in aqueous humor of eyes with diabetic macular edema[J]. Retina, 2012, 32(10): 2150-2157.
|
[25] |
Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications[J]. Br J Ophthalmol, 2012, 96(10): 1285-1290.
|
[26] |
Santiago AR, Gaspar JM, Baptista FI, et al. Diabetes changes the levels of ionotropic glutamate receptors in the rat retina[J]. Mol Vis, 2009, 15: 1620-1630.
|
[27] |
Dal Monte M, Petrucci C, Cozzi A, et al. Somatostatin inhibits potassium-evoked glutamate release by activation of the sst(2) somatostatin receptor in the mouse retina[J]. Naunyn Schmiedebergs Arch Pharmacol, 2003, 367(2): 188-192.
|
[28] |
Kouvidi E, Papadopoulou-Daifoti Z, Thermos K. Somatostatin modulates dopamine release in rat retina[J]. Neurosci Lett, 2006, 391(3): 82-86.
|
[29] |
Cervia D, Catalani E, Dal Monte M, et al. Vascular endothelial growth factor in the ischemic retina and its regulation by somatostatin[J]. J Neurochem, 2012, 120(5): 818-829.
|
[30] |
Ray C, Carney S, Morgan T, et al. Somatostatin as a modulator of distal nephron water permeability[J]. Clin Sci (Lond), 1993, 84(4): 455-460.
|
[31] |
Lambooij AC, Kuijpers RW, van Lichtenauer-Kaligis EG, et al. Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2000, 41(8): 2329-2335.
|
[32] |
Hernández C, Carrasco E, Casamitjana R, et al. Somatostatin molecular variants in the vitreous fluid: a comparative study between diabetic patients with proliferative diabetic retinopathy and nondiabetic control subjects[J]. Diabetes Care, 2005, 28(8): 1941-1947.
|
[33] |
Boehm BO, Lang GK, Jehle PM, et al. Octreotide reduces vitreous hemorrhage and loss of visual acuity risk in patients with high-risk proliferative diabetic retinopathy[J]. Horm Metabo Res, 2001, 33(5): 300-306.
|
[34] |
Lim LS, Liew G, Cheung N, et al. Mixed messages on systemic therapies for diabetic retinopathy[J]. Lancet, 2010, 376(9751): 1461, 1462.
|
[35] |
Hernández C, García-Ramírez M, Corraliza L, et al. Topical administration of somatostatin prevents retinal neurodegeneration in experimental diabetes[J]. Diabetes, 2013, 62(7): 2569-2578.
|
[36] |
Domingueti CP, Dusse LM, Carvalho Md, et al. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications[J]. J Diabetes Complications, 2016, 30(4): 738-745.
|
[37] |
Aghadavod E, Khodadadi S, Baradaran A, et al. Role of oxidative stress and inflammatory factors in diabetic kidney disease[J]. Iran J Kidney Dis, 2016, 10(6): 337-343.
|
[38] |
Gupta MM, Chari S. Lipid peroxidation and antioxidant status in patients with diabetic retinopathy[J]. Indian J Physiol Pharmacol, 2005, 49(2): 187-192.
|
[39] |
Dave A, Kalra P, Gowda BH, et al. Association of bilirubin and malondialdehyde levels with retinopathy in type 2 diabetes mellitus[J]. Indian J Endocrinol Metab, 2015, 19(3): 373-377.
|
[40] |
Li C, Miao X, Li F, et al. Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy[J]. Oxid Med Cell Longev, 2017, 2017: 9702820.
|
[41] |
Fariss MW, Chan CB, Patel M, et al. Role of mitochondria in toxic oxidative stress[J]. Mol Interv, 2005, 5(2): 94-111.
|
[42] |
Yoshikawa Y, Murayama A, Adachi Y, et al. Challenge of studies on the development of new Zn complexes (Zn(opt)2) to treat diabetes mellitus[J]. Metallomics, 2011, 3(7): 686-692.
|
[43] |
Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283(2-3): 65-87.
|
[44] |
Roussel AM, Kerkeni A, Zouari N, et al. Antioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus[J]. J Am Coll Nutr, 2003, 22(4): 316-321.
|
[45] |
Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc[J]. Exp Gerontol, 2008, 43(5): 370-377.
|
[46] |
Zheng Y, Li XK, Wang Y, et al. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators[J]. Hemoglobin, 2008, 32(1-2): 135-145.
|
[47] |
朱鑫淼. 糖尿病视网膜病变患者血清和尿液中微量元素的变化[D]. 沈阳:中国医科大学,2014.
|
[48] |
Evans JL, Goldfine ID, Maddux BA, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?[J]. Diabetes, 2003, 52(1): 1-8.
|
[49] |
Wilson C. Metabolism: iron metabolism, adiponectin and T2DM——the link with adipocyte insulin resistance[J]. Nat Rev Endocrinol, 2012, 8(12): 696.
|
[50] |
Sales CH, Pedrosa Lde F. Magnesium and diabetes mellitus: their relation[J]. Clin Nutr, 2006, 25(4): 554-562.
|
[51] |
Geiger H, Wanner C. Magnesium in disease[J]. Clin Kidney J, 2012, 5(S1): i25-i38.
|
[52] |
Kim DJ, Xun P, Liu K, et al. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes[J]. Diabetes Care, 2010, 33(12): 2604-2610.
|
[53] |
Kundu D, Osta M, Mandal T, et al. Serum magnesium levels in patients with diabetic retinopathy[J]. J Nat Sci Biol Med, 2013, 4(1): 113-116.
|
[54] |
Ouchi N, Kihara S, Arita Y, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway[J]. Circulation, 2000, 102(11): 1296-1301.
|
[55] |
Yilmaz MI, Sonmez A, Acikel C, et al. Adiponectin may play a part in the pathogenesis of diabetic retinopathy[J]. Eur J Endocrinol, 2004, 151(1): 135-140.
|
[56] |
赖静怡,张颖栩,黄焕葵. 血清胱抑素C及血脂水平与糖尿病视网膜病变的关系研究[J]. 国际眼科杂志,2015(11):2003-2005.
|
[57] |
Yang H, Wang C, Guo M, et al. Correlations between peroxisome proliferator activator receptor γ,Cystatin C, or advanced oxidation protein product, and atherosclerosis in diabetes patients[J]. Pathol Res Pract, 2015, 211(3): 235-239.
|