切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2019, Vol. 09 ›› Issue (03) : 172 -176. doi: 10.3877/cma.j.issn.2095-2007.2019.03.008

综述

糖尿病视网膜病变与血清生化指标的相关性研究
姜姗1, 朱丹1,(), 陶勇2   
  1. 1. 010050 呼和浩特,内蒙古医科大学附属医院眼科
    2. 100020 首都医科大学附属北京朝阳医院眼科
  • 收稿日期:2019-03-16 出版日期:2019-06-28
  • 通信作者: 朱丹
  • 基金资助:
    国家自然科学基金项目(81860178,81560165); 国家高技术研究发展计划(2015AA020949); 北京朝阳医院"1351人才培养计划"(CYXX-2017-21)

The correlation between diabetic retinopathy and serum biochemical indexes

Shan Jiang1, Dan Zhu1,(), Yong Tao2   

  1. 1. Department of Ophthalmology, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
    2. Department of Ophthalmology, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China
  • Received:2019-03-16 Published:2019-06-28
  • Corresponding author: Dan Zhu
引用本文:

姜姗, 朱丹, 陶勇. 糖尿病视网膜病变与血清生化指标的相关性研究[J]. 中华眼科医学杂志(电子版), 2019, 09(03): 172-176.

Shan Jiang, Dan Zhu, Yong Tao. The correlation between diabetic retinopathy and serum biochemical indexes[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2019, 09(03): 172-176.

糖尿病视网膜病变(DR)是发生于糖尿病患者眼部的微血管病变,可致患者视力丧失,严重降低患者生存质量。DR的发病机制目前尚无定论,主要观点认为长期慢性高血糖是其发病基础,多种因素共同作用导致病情进展。目前,已证实眼内液炎症因子与DR存在关联,并在临床给予患者眼内注射药物治疗。鉴于眼内注射药物具有一定的缺点,且血清炎症因子对DR的发展也有影响,本文中笔者就血清中的生化指标与DR的关联性进行综述。

Diabetic retinopathy (DR) is a microangiopathy lesion which occurs in diabetic patients′ eyes. It can cause vision loss and seriously reduce patient′s life quality. The pathogenesis of DR is still uncertain. The main viewpoint is that long-term chronic hyperglycemia is the basis of the disease, and multiple factors may play a role in phases, contributing to the overall outcome of DR process. Inflammatory factors in intraocular fluid have been confirmed to be associated with DR, thus intraocular drug therapy is given in clinic. In view of shortcomings of intraocular injection drug and the influence of serum inflammatory factors on the development of DR, this paper summarizes the relationship between serum biochemical indices and DR.

图1 血管内皮生长因子引起糖尿病视网膜病变的机制示意图
图2 生长抑素对糖尿病视网膜病变的保护作用示意图
图3 氧化应激诱导糖尿病视网膜病变示意图
[1]
Whiting DR, Guariguata L, Weil C, et al. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030[J]. Diabetes Res Clin Pract, 2011, 94(3): 311-321.
[2]
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J]. Eye Vis (Lond), 2015, 2: 17.
[3]
Ola MS, Nawaz MI, Siddiquei MM, et al. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy[J]. J Diabetes Complications, 2012, 26(1): 56-64.
[4]
Semenza GL. HIF-1: using two hands to flip the angiogenic switch[J]. Cancer Metastasis Rev, 2000, 19(1-2): 59-65.
[5]
Romero-Aroca P, Baget-Bernaldiz M, Pareja-Rios A, et al. Diabetic macular edema pathophysiology: vasogenic versus inflammatory[J]. J Diabetes Res, 2016, 2016: 2156273.
[6]
Shibuya M, Yamaguchi S, Yamane A, et al. Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family[J]. Oncogene, 1990, 5(4): 519-524.
[7]
Gupta N, Mansoor S, Sharma A, et al. Diabetic retinopathy and VEGF[J]. Open Ophthalmology Journal, 2013, 7(1): 4-10.
[8]
Geraldes P, Hiraoka-Yamamoto J, Matsumoto M, et al. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy[J]. Nat Med, 2009, 15(11): 1298-1306.
[9]
Witmer AN, Vrensen GF, Van Noorden CJ, et al. Vascular endothelial growth factors and angiogenesis in eye disease[J]. Prog Retin Eye Res, 2003, 22(1): 1-29.
[10]
Nicholson BP, Schachat AP. A review of clinical trials of anti-VEGF agents for diabetic retinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2010, 248(7): 915-930.
[11]
Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy[J]. Exp Diabetes Res, 2007, 2007: 95103.
[12]
Adamis AP. Is diabetic retinopathy an inflammatory disease?[J]. Br J Ophthalmol, 2002, 86(4): 363-365.
[13]
Koleva-Georgieva DN, Sivkova NP, Terzieva D. Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha and VEGF have influence on the development of diabetic retinopathy[J]. Folia Med (Plovdiv), 2011, 53(2): 44-50.
[14]
Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[J]. Int J Mol Sci, 2018, 19(4): E942.
[15]
Ben-Mahmud BM, Chan WH, Abdulahad RM, et al. Clinical validation of a link between TNF-alpha and the glycosylation enzyme core 2 GlcNAc-T and the relationship of this link to diabetic retinopathy[J]. Diabetologia, 2006, 49(9): 2185-2191.
[16]
Fante RJ, Gardner TW, Sundstrom JM. Current and future management of diabetic retinopathy: a personalized evidence-based approach[J]. Diabetes Manag (Lond), 2013, 3(6): 481-494.
[17]
Krady JK, Basu A, Allen CM, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy[J]. Diabetes, 2005, 54(5): 1559-1565.
[18]
Roy MS, Roy A, Brown S. Increased urinary-free cortisol outputs in diabetic patients[J]. J Diabetes Complications, 1998, 12(1): 24-27.
[19]
Hang H, Yuan S, Yang Q, et al. Multiplex bead array assay of plasma cytokines in type 2 diabetes mellitus with diabetic retinopathy[J]. Mol Vis, 2014, 20: 1137-1145.
[20]
Loukovaara S, Piippo N, Kinnunen K, et al. NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy[J]. Acta Ophthalmol, 2017, 95(8): 803-808.
[21]
Chen H, Zhang X, Liao N, et al. Assessment of biomarkers using multiplex assays in aqueous humor of patients with diabetic retinopathy[J]. BMC Ophthalmol, 2017, 17(1): 176.
[22]
Koya D, King GL. Protein kinase C activation and the development of diabetic complications[J]. Diabetes, 1998, 47(6): 859-866.
[23]
Semeraro F, Cancarini A, dell′ Omo R, et al. Diabetic retinopathy: vascular and inflammatory disease[J]. J Diabetes Res, 2015, 2015: 582060.
[24]
Jonas JB, Jonas RA, Neumaier M, et al. Cytokine concentration in aqueous humor of eyes with diabetic macular edema[J]. Retina, 2012, 32(10): 2150-2157.
[25]
Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration is an early event in diabetic retinopathy: therapeutic implications[J]. Br J Ophthalmol, 2012, 96(10): 1285-1290.
[26]
Santiago AR, Gaspar JM, Baptista FI, et al. Diabetes changes the levels of ionotropic glutamate receptors in the rat retina[J]. Mol Vis, 2009, 15: 1620-1630.
[27]
Dal Monte M, Petrucci C, Cozzi A, et al. Somatostatin inhibits potassium-evoked glutamate release by activation of the sst(2) somatostatin receptor in the mouse retina[J]. Naunyn Schmiedebergs Arch Pharmacol, 2003, 367(2): 188-192.
[28]
Kouvidi E, Papadopoulou-Daifoti Z, Thermos K. Somatostatin modulates dopamine release in rat retina[J]. Neurosci Lett, 2006, 391(3): 82-86.
[29]
Cervia D, Catalani E, Dal Monte M, et al. Vascular endothelial growth factor in the ischemic retina and its regulation by somatostatin[J]. J Neurochem, 2012, 120(5): 818-829.
[30]
Ray C, Carney S, Morgan T, et al. Somatostatin as a modulator of distal nephron water permeability[J]. Clin Sci (Lond), 1993, 84(4): 455-460.
[31]
Lambooij AC, Kuijpers RW, van Lichtenauer-Kaligis EG, et al. Somatostatin receptor 2A expression in choroidal neovascularization secondary to age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2000, 41(8): 2329-2335.
[32]
Hernández C, Carrasco E, Casamitjana R, et al. Somatostatin molecular variants in the vitreous fluid: a comparative study between diabetic patients with proliferative diabetic retinopathy and nondiabetic control subjects[J]. Diabetes Care, 2005, 28(8): 1941-1947.
[33]
Boehm BO, Lang GK, Jehle PM, et al. Octreotide reduces vitreous hemorrhage and loss of visual acuity risk in patients with high-risk proliferative diabetic retinopathy[J]. Horm Metabo Res, 2001, 33(5): 300-306.
[34]
Lim LS, Liew G, Cheung N, et al. Mixed messages on systemic therapies for diabetic retinopathy[J]. Lancet, 2010, 376(9751): 1461, 1462.
[35]
Hernández C, García-Ramírez M, Corraliza L, et al. Topical administration of somatostatin prevents retinal neurodegeneration in experimental diabetes[J]. Diabetes, 2013, 62(7): 2569-2578.
[36]
Domingueti CP, Dusse LM, Carvalho Md, et al. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications[J]. J Diabetes Complications, 2016, 30(4): 738-745.
[37]
Aghadavod E, Khodadadi S, Baradaran A, et al. Role of oxidative stress and inflammatory factors in diabetic kidney disease[J]. Iran J Kidney Dis, 2016, 10(6): 337-343.
[38]
Gupta MM, Chari S. Lipid peroxidation and antioxidant status in patients with diabetic retinopathy[J]. Indian J Physiol Pharmacol, 2005, 49(2): 187-192.
[39]
Dave A, Kalra P, Gowda BH, et al. Association of bilirubin and malondialdehyde levels with retinopathy in type 2 diabetes mellitus[J]. Indian J Endocrinol Metab, 2015, 19(3): 373-377.
[40]
Li C, Miao X, Li F, et al. Oxidative stress-related mechanisms and antioxidant therapy in diabetic retinopathy[J]. Oxid Med Cell Longev, 2017, 2017: 9702820.
[41]
Fariss MW, Chan CB, Patel M, et al. Role of mitochondria in toxic oxidative stress[J]. Mol Interv, 2005, 5(2): 94-111.
[42]
Yoshikawa Y, Murayama A, Adachi Y, et al. Challenge of studies on the development of new Zn complexes (Zn(opt)2) to treat diabetes mellitus[J]. Metallomics, 2011, 3(7): 686-692.
[43]
Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283(2-3): 65-87.
[44]
Roussel AM, Kerkeni A, Zouari N, et al. Antioxidant effects of zinc supplementation in Tunisians with type 2 diabetes mellitus[J]. J Am Coll Nutr, 2003, 22(4): 316-321.
[45]
Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc[J]. Exp Gerontol, 2008, 43(5): 370-377.
[46]
Zheng Y, Li XK, Wang Y, et al. The role of zinc, copper and iron in the pathogenesis of diabetes and diabetic complications: therapeutic effects by chelators[J]. Hemoglobin, 2008, 32(1-2): 135-145.
[47]
朱鑫淼. 糖尿病视网膜病变患者血清和尿液中微量元素的变化[D]. 沈阳:中国医科大学,2014.
[48]
Evans JL, Goldfine ID, Maddux BA, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?[J]. Diabetes, 2003, 52(1): 1-8.
[49]
Wilson C. Metabolism: iron metabolism, adiponectin and T2DM——the link with adipocyte insulin resistance[J]. Nat Rev Endocrinol, 2012, 8(12): 696.
[50]
Sales CH, Pedrosa Lde F. Magnesium and diabetes mellitus: their relation[J]. Clin Nutr, 2006, 25(4): 554-562.
[51]
Geiger H, Wanner C. Magnesium in disease[J]. Clin Kidney J, 2012, 5(S1): i25-i38.
[52]
Kim DJ, Xun P, Liu K, et al. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes[J]. Diabetes Care, 2010, 33(12): 2604-2610.
[53]
Kundu D, Osta M, Mandal T, et al. Serum magnesium levels in patients with diabetic retinopathy[J]. J Nat Sci Biol Med, 2013, 4(1): 113-116.
[54]
Ouchi N, Kihara S, Arita Y, et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway[J]. Circulation, 2000, 102(11): 1296-1301.
[55]
Yilmaz MI, Sonmez A, Acikel C, et al. Adiponectin may play a part in the pathogenesis of diabetic retinopathy[J]. Eur J Endocrinol, 2004, 151(1): 135-140.
[56]
赖静怡,张颖栩,黄焕葵. 血清胱抑素C及血脂水平与糖尿病视网膜病变的关系研究[J]. 国际眼科杂志2015(11):2003-2005.
[57]
Yang H, Wang C, Guo M, et al. Correlations between peroxisome proliferator activator receptor γ,Cystatin C, or advanced oxidation protein product, and atherosclerosis in diabetes patients[J]. Pathol Res Pract, 2015, 211(3): 235-239.
[1] 高建松, 陈晓晓, 冯婷, 包剑锋, 魏淑芳, 潘林. 基于超声瞬时弹性成像的多参数决策树模型评估慢性乙型肝炎患者肝纤维化等级[J]. 中华医学超声杂志(电子版), 2023, 20(09): 923-929.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 史博慧, 丁西萍, 王恋, 李茸, 郭萍利, 齐晶, 陈瑶, 郝娜, 任予. 乳腺癌术后皮下积液防治的最佳证据总结[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 277-284.
[4] 葛飞霞, 蒋银, 杨丹. 酶联免疫吸附测定法与PCR仪检测在乙型肝炎诊断中的临床应用[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 310-315.
[5] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[6] 刘星, 吴立胜, 王炜林, 李猛. 远端疝囊残端固定与游离对腹股沟斜疝TAPP术后血清肿的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 550-553.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[9] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[10] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 辛彩焕, 熊辉. 非疫区36例布鲁菌病患者的临床特征及诊疗分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 927-931.
[13] 王丽芳, 宁武, 丁艳, 张彦霞, 马豆豆, 卢哲敏, 韩芃, 李超然, 王宽婷. 北京市石景山区中学生的血尿酸与血清25(OH)D3水平的相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(08): 865-869.
[14] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[15] 谭睿, 王晶, 於江泉, 郑瑞强. 脓毒症中高密度脂蛋白、载脂蛋白A-I和血清淀粉样蛋白A的作用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(06): 749-753.
阅读次数
全文


摘要