切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2017, Vol. 07 ›› Issue (05) : 211 -216. doi: 10.3877/cma.j.issn.2095-2007.2017.05.004

所属专题: 文献

论著

图形视网膜电图在黄斑部疾病中应用价值的研究
张静琳1, 吴德正1,(), 李梦媛1, 侯金佟1, 汤云霞1, 高汝龙1, 梁炯基1   
  1. 1. 510060 广州爱尔眼科医院眼科
  • 收稿日期:2016-12-22 出版日期:2017-10-28
  • 通信作者: 吴德正
  • 基金资助:
    广东省医学科学技术研究基金(C2017028); 广州市越秀区科技计划项目(2016-WS-010)

The study of the application value of graph retinal electrogram in macular disease

Jinglin Zhang1, Dezheng Wu1,(), Mengyuan Li1, Jintong Hou1, Yunxia Tang1, Rulong Gao1, Jiongji Liang1   

  1. 1. Department of Ophthalmology, Guangzhou Aier Eye Hospital, Guangzhou 510060, China
  • Received:2016-12-22 Published:2017-10-28
  • Corresponding author: Dezheng Wu
  • About author:
    Corresponding author: Wu Dezheng, Email:
引用本文:

张静琳, 吴德正, 李梦媛, 侯金佟, 汤云霞, 高汝龙, 梁炯基. 图形视网膜电图在黄斑部疾病中应用价值的研究[J]. 中华眼科医学杂志(电子版), 2017, 07(05): 211-216.

Jinglin Zhang, Dezheng Wu, Mengyuan Li, Jintong Hou, Yunxia Tang, Rulong Gao, Jiongji Liang. The study of the application value of graph retinal electrogram in macular disease[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2017, 07(05): 211-216.

目的

建立实验室图形视网膜电图(PERG)各项测量参数的医学参考值范围。采用PERG对黄斑部疾病患者的黄斑部功能改变情况进行评价。

方法

收集2013年1月至2014年3月于广州爱尔眼科医院就诊的21例(29只眼)黄斑病变患者及68例(68只眼)无其他眼部疾病的正常人的临床资料,进行前瞻性对照研究。将纳入研究的全部正常人作为对照组。将对照组正常人按照年龄和裸眼视力分为两个亚组。其中,裸眼视力≥1.0且年龄≥45岁者为对照A组;裸眼视力≥0.8且年龄<45岁者为对照B组。将全部黄斑部疾病患者作为黄斑部疾病组。将黄斑部疾病组患者按照年龄和最佳矫正视力分为两个亚组。其中,最佳矫正视力≥0.1且年龄<45岁者为黄斑A组;最佳矫正视力≥0.1且年龄≥45岁者为黄斑B组。对照组正常人和黄斑部疾病组患者均行相同的PERG检测,记录全部受检者N35波、P50波及N95波潜伏期和P50波及N95波振幅等PERG测量参数。分别将对照组正常人的2个年龄组各项PERG测量参数的2.5%~97.5%百分位数作为本实验室的医学参考值范围。计算黄斑部疾病组患者各项PERG测量参数的异常率。对照组和黄斑部疾病组患者PERG各项测量参数采用中位数和2.5%~97.5%百分位数进行描述。对照组和黄斑部疾病组对应年龄组PERG各项测量参数的组间比较采用Mann-Whitney检验。

结果

经检验,本实验室PERG各项测量参数的医学参考值范围如下。对照A组的N35波、P50波及N95波的潜伏期分别为29.00~32.50 ms、50.00~58.40 ms及93.50~112.90 ms,P50波及N95波的振幅分别为1.14~3.30 μV及3.41~9.61 μV;对照B组的N35波、P50波及N95波的潜伏期分别为25.10~31.90 ms、48.10~56.00 ms及90.30~110.00 ms,P50波及N95波的振幅分别为3.86~8.77 μV及4.93~11.78 μV。黄斑A组患者N35波、P50波及N95波的潜伏期和P50波及N95波的振幅的异常率分别为85%、10%、25%、85%及95%;黄斑B组患者N35波、P50波及N95波的潜伏期和P50波及N95波的振幅的异常率分别为89%、56%、56%、89%及78%。将两组受检者N35波、P50波及N95波的潜伏期进行比较。发现黄斑部疾病组各反应波的潜伏期均大于对照组。其中,在<45岁的受检者中,黄斑A组N35波、P50波及N95波与对照B组比较,差异有统计学意义(Z=2.45,2.96,3.10;P<0.05);在≥45岁的受检者中,黄斑B组N35波、P50波及N95波与对照A组比较,差异无统计学意义(Z=1.52,0.96,1.25;P>0.05)。将黄斑部疾病组患者P50波及N95波的振幅与对照组比较,黄斑部疾病组患者P50波及N95波的振幅均低于对照组,差异均有统计学意义[<45岁组为(Z=10.46,8.28;P<0.05),>45岁组为(Z=8.17,5.88;P<0.05)]。

结论

PERG可客观反映黄斑部疾病患者的黄斑部功能改变情况,具有简单、快速及安全的特点,尤其适用于老年人及儿童等患者,值得推广使用。

Objective

To establish the medical reference range of pattern electroretinogram (PERG) measurement parameters in our laboratory. To evaluate the changes of macular function in patients with macular diseases by PERG.

Methods

The clinical data of 21 cases (29 eyes) with maculopathy who have visited Guang zhou Aier Eye Hospital and 68 cases (68 eyes) with normal eyes and no other ocular diseases were collected from January 2013 to March 2014 for our prospective controlled study. All normal subjects were included in the control group. The control group was divided into two subgroups according to age and naked vision. The naked vision ≥1 and 45 years of age or older subjects were divided into ≥45 years old group; the naked vision ≥0.8 and younger than 45 years subjects were divided into <45 years old group. All patients with maculopathy were treated as macular disease group. Patients with maculopathy were divided into two subgroups according to age and best corrected visual acuity. Among them, the best corrected visual ≥0.1 and younger than 45 years patients were divided into <45 years old group; the best corrected visual ≥0.1 and 45 years of age or older subjects were divided into ≥45 years old group. Normal subjects in the control group and the patients with maculopathy were detected with the same PERG. The PERG measurement parameters of peak latency of N35 wave, P50 wave and N95 wave and the peak amplitude of P50 wave and N95 wave were recorded for all subjects. The 2.5%~97.5% percentile of each measurement parameters of 2 age groups in the control group were used as the medical reference range of PERG in our laboratory. Abnormal rate of PERG measurement parameters in patients with maculopathy were calculated. PERG measurement parameters of normal subjects in the control group and patients in the macular disease group were described by median and 2.5%~97.5% percentile. PERG measurement parameters between control group and macular disease group in corresponding age group were compared using Mann-Whitney test.

Results

The PERG measurement parameters in our laboratory are following. For ≥45 years old people, peak latency of N35 wave, P50 wave and N95 wave were 29.00~32.50 ms, 50.00~58.40 ms and 93.50~112.90 ms respectively, and the peak amplitude of P50 wave and N95 wave were 1.14~3.30 μV and 3.41~9.61 μV; for <45 years old people, peak latency of N35 wave, P50 wave and N95 wave were 25.10~31.90 ms, 48.10~56.00 ms and 90.30~110.00 ms respectively. The peak amplitude of P50 wave and N95 wave were 3.86~8.77 μV and 4.93~11.78 μV. For macular disease group patients, the abnormal rate of peak latency of N35 wave, P50 wave and N95 wave and peak amplitude of P50 wave and N95 wave were 85%, 10%, 25%, 85% and 95% in <45 years old group; the abnormal rate of peak latency of N35 wave, P50 wave and N95 wave and peak amplitude of P50 wave and N95 wave were 89%, 56%, 56%, 89% and 78% in ≥45 years old group. The peak latency of N35 wave, P50 wave and N95 wave of the two groups were compared. It was found that the peak latency of each wave in the macular disease group were higher than that in the control group. Among them, in the <45 age group, comparing N35 wave, P50 wave and N95 wave of macular disease group with the control group, the differences were statistically significant (Z=2.45, 2.96, 3.10; P<0.05); in ≥45 years old group, comparing N35 wave, P50 wave and N95 wave of macular disease group with the control group, the differences were not statistically significant (Z=1.52, 0.96, 1.25; P>0.05). Comparing the peak amplitude of P50 wave and N95 of macular disease group with the control group, the peak amplitude of P50 wave and N95 of macular disease group in each age were lower than the normal group, the differences were statistically significant [<45 years group (Z=10.46, 8.28; P<0.05), >45 years old group (Z=8.17, 5.88; P<0.05)].

Conclusion

PERG can objectively reflect the changes of macular function in patients with maculopathy, which is simple, fast and safe, especially suitable for the elderly and children.

表1 黄斑部疾病组患者的疾病构成
表2 图形视网膜电图各项指标的正常值范围
图1 黄斑A组患者PERG检测指标潜伏期和振幅的异常率
图2 黄斑B组患者PERG检测指标潜伏期和振幅的异常率
表3 对照组与黄斑部疾病组患者图形视网膜电图各项指标值的比较
[1]
吴德正.罗兰视觉电生理仪测试方法和临床应用图谱[M].修订版.北京:北京科学技术出版社,2013:4.
[2]
Bach M, Brigell MG, Hawlina M, et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update[J]. Doc Ophthalmol, 2013, 126(1):1-7.
[3]
Fiorentini A, Maffei L, Pirchio M, et al. The ERG in response to alternating gratings in patients with diseases of the peripheral visual pathway[J]. Invest Ophthalmol Vis Sci, 1981, 21(3):490-493.
[4]
Holder GE. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis[J]. Prog Retin Eye Res, 2001, 20(4):531-561.
[5]
Viswanathan S, Frishman LJ, Robson JG. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity[J]. Invest Ophthalmol Vis Sci, 2000, 41(9):2797-2810.
[6]
Berninger T, Schuurmans RP. Spatial tuning of the pattern ERG across temporal frequency[J]. Doc Ophthalmol, 1985, 61(1):17-25.
[7]
Bach M, Poloschek CM. Electrophysiology and glaucoma: current status and future challenges[J]. Cell Tissue Res, 2013, 353(2):287-296.
[8]
陈璐,孙红,袁志兰.P-ERG与盘沿面积测量在原发性开角型青光眼早期诊断中的应用比较[J].临床眼科杂志,2008, 16(4),292-294.
[9]
Bode SF, Jehle T, Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study[J]. Invest Ophthalmol Vis Sci, 2011, 52(7):4300-4306.
[10]
La MA, Horn FK, Kremers J, et al. Pattern Electroretinograms During The Cold Pressor Test In Normals And Glaucoma Patients[J]. Invest Ophthalmol Vis Sci, 2014, 55(4):2173-2179.
[11]
Jafarzadehpour E, Radinmehr F, Pakravan M, et al. Pattern electroretinography in glaucoma suspects and early primary open angle glaucoma[J]. J Ophthalmic Vis Res, 2013, 8(3):199-206.
[12]
Parisi V, Miglior S, Manni G, et al. Clinical ability of pattern electroretinograms and visual evoked potentials in detecting visual dysfunction in ocular hypertension and glaucoma[J]. Ophthalmology, 2006, 113(2):216-228.
[13]
Parisi V, Manni G, Centofanti M, et al. Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients[J]. Ophthalmology, 2001, 108(5):905-912.
[14]
Bayer AU, Maag KP, Erb C. Detection of optic neuropathy in glaucomatous eyes with normal standard visual fields using a test battery of short-wavelength automated perimetry and pattern electroretinography[J]. Ophthalmology, 2002, 109(7):1350-1361.
[15]
Ventura LM, Porciatti V, Ishida K, et al. Pattern electroretinogram abnormality and glaucoma[J]. Ophthalmology, 2005, 112(1):10-19.
[16]
Wilsey LJ, Fortune B. Electroretinography in glaucoma diagnosis[J]. Curr Opin Ophthalmol, 2016, 27(2):118-124.
[17]
Bach M, Unsoeld AS, Philippin H, et al. Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study[J]. Invest Ophthalmol Vis Sci, 2006, 47(11):4881-4887.
[18]
Porciatti V, Saleh M, Nagaraju M. The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma[J]. Invest Ophthalmol Vis Sci, 2007, 48(2):745-751.
[19]
Marx MS, Podos SM, Bodis-Wollner I, et al. Flash and pattern electroretinograms in normal and laser-induced glaucomatous primate eyes[J]. Invest Ophthalmol Vis Sci, 1986, 27(3):378-386.
[20]
Marx MS, Podos SM, Bodis-Wollner I, et al. Signs of early damage in glaucomatous monkey eyes: low spatial frequency losses in the pattern ERG and VEP[J]. Exp Eye Res, 1988, 46(2):173-184.
[21]
Bach M, Sulimma F, Gerling J. Little correlation of the pattern electroretinogram (PERG) and visual field measures in early glaucoma[J]. Doc Ophthalmol, 1997, 94(3):253-263.
[22]
Thompson DA, Drasdo N. Computation of the luminance and pattern components of the bar pattern electroretinogram[J]. Doc Ophthalmol, 1987, 66(3):233-244.
[23]
Bach M, Holder GE. Check size tuning of the pattern electroretingoram: a reappraisal[J]. Doc Ophthalmol, 1996, 92(3):193-202.
[24]
Teping C, Groneberg A. Physiological basis and clinical application of pattern electroretinogram[J]. Dev Ophthalmol, 1984, 9(385):74-80.
[25]
Bach M, Hoffmann MB. Update on the pattern electroretinogram in glaucoma[J]. Optom Vis Sci, 2008, 85(6):386-395.
[26]
Oner A, Gumus K, Arda H, et al. Pattern electroretinographic recordings in eyes with myopia[J]. Eye Contact Lens, 2009, 35(5):238-241.
[27]
Arden GB, Hamilton AM, Wilson-Holt J, et al. Pattern electroretinograms become abnormal when background diabetic retinopathy deteriorates to a preproliferative stage: possible use as a screening test[J]. Br J Ophthalmol, 1986, 70(5):330-335.
[28]
Robson AG, Michaelides M, Saihan Z, et al. Functional characteristics of patients with retinal dystrophy that manifest abnormal parafoveal annuli of high density fundus autofluorescence; a review and update[J]. Doc Ophthalmol, 2008, 116(2):79-89.
[29]
Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial[J]. Arch Ophthalmol, 2002, 120(10):1268-1279.
[30]
North RV, Jones AL, Drasdo N, et al. Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension[J]. Invest Ophthalmol Vis Sci, 2010, 51(2):1216-1222.
[31]
Robson AG, El-Amir A, Bailey C, et al. Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity[J]. Invest Ophthalmol Vis Sci, 2003, 44(8):3544-3550.
[32]
Parisi V, Coppe AM, Gallinaro G, et al. Assessment of macular function by focal electroretinogram and pattern electroretinogram before and after epimacular membrane surgery[J]. Retina, 2007, 27(3):312-320.
[33]
Varano M, Parisi V, Tedeschi M, et al. Macular function after PDT in myopic maculopathy: psychophysical and electrophysiological evaluation[J]. Invest Ophthalmol Vis Sci, 2005, 46(4):1453-1462.
[34]
Ozkiris A. Pattern electroretinogram changes after intravitreal bevacizumab injection for diabetic macular edema[J]. Doc Ophthalmol, 2010, 120(3):243-250.
[35]
马斌荣.医学统计学[M].北京:人民卫生出版社,2008:22-24.
[36]
Marmor MF, Fulton AB, Holder GE, et al. ISCEV Standard for full-field clinical electroretinography (2008 update)[J]. Doc Ophthalmol, 2009, 118(1):69-77.
[37]
Porciatti V, Burr DC, Morrone MC, et al. The effects of aging on the pattern electroretinogram and visual evoked potential in humans[J]. Vision Res, 1992, 32(7):1199-1209.
[38]
Celesia GG, Kaufman D, Cone S. Effects of age and sex on pattern electroretinograms and visual evoked potentials[J]. Electroencephalogr Clin Neurophysiol, 1987, 68(3):161-171.
[39]
Porciatti V, Falsini B, Scalia G, et al. The pattern electroretinogram by skin electrodes: effect of spatial frequency and age[J]. Doc Ophthalmol, 1988, 70(1):117-122.
[40]
Hull BM, Drasdo N. The influence of age on the pattern-reversal electroretinogram[J]. Ophthalmic Physiol Opt, 1990, 10(1):49-53.
[41]
Trick GL, Nesher R, Cooper DG, et al. The human pattern ERG: alteration of response properties with aging[J]. Optom Vis Sci, 1992, 69(2):122-128.
[1] 陆月合, 高晓燕. 新生儿感染性脑损伤的早期诊断[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(04): 380-386.
[2] 肖玥言, 魏文斌, 郗平, 高博, 王嘉南, 耿云云, 郑敏, 焦凤影. 60岁以上社区人群特发性黄斑前膜全身性危险因素的流行病学研究[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 281-286.
[3] 魏航, 赵明威, 曲进锋. 基于文本挖掘数据库干性年龄相关性黄斑变性免疫反应核心基因与关键通路的生物信息学分析[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 262-267.
[4] 王宛婷, 梁婷, 孙蕾. 年龄相关性黄斑变性的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 183-187.
[5] 黄瑶, 侯思梦, 魏文斌. 继发黄斑水肿的视网膜中央静脉阻塞患眼脉络膜厚度的变化及雷珠单抗治疗效果的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 134-139.
[6] 吴培培, 陈秀丽, 冯程程, 徐海峰. 玻璃体腔注射雷珠单抗联合地塞米松治疗视网膜中央静脉阻塞继发黄斑水肿的临床研究[J]. 中华眼科医学杂志(电子版), 2022, 12(01): 24-30.
[7] 张珂, 刘武. 近视眼牵引性黄斑病变相关因素的研究现状[J]. 中华眼科医学杂志(电子版), 2021, 11(06): 380-384.
[8] 陈昱凝, 沈畅, 李洋, 魏文斌. 特发性黄斑裂孔发病机制、诊断及治疗的研究进展[J]. 中华眼科医学杂志(电子版), 2021, 11(04): 234-241.
[9] 张永鹏, 曹绪胜, 李继鹏, 周海英, 贾力蕴, 徐军, 段安丽, 彭晓燕, 马凯. 黄斑部视网膜内界膜下出血行577 nm激光膜切开术的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 159-165.
[10] 段如月, 张天资, 晓琴, 韩永青, 佟玉兰. 光学相干断层扫描血管成像技术在康柏西普对湿性年龄相关性黄斑变性治疗效果评价中的临床研究[J]. 中华眼科医学杂志(电子版), 2021, 11(03): 140-145.
[11] 王柏嵊, 张黎, 于炎冰. 面肌痉挛病因学的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 246-248.
[12] 冯兆海, 裴祎楠, 哈里木热提·帕尔哈提, 郝玉军, 姜磊. 术中神经电生理监测相关危险因素分析及预防策略[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 232-236.
[13] 曹宾, 郭瑛, 夏盼盼, 刘佳榛, 王骏, 孙育民. 非阵发性心房颤动的治疗策略:来自心脏电生理一线医师的问卷调查[J]. 中华心脏与心律电子杂志, 2023, 11(03): 147-153.
[14] 李娜, 李军, 郭李平, 王海雄. 血管紧张素受体脑啡肽酶抑制剂在心律失常患者中的应用[J]. 中华心脏与心律电子杂志, 2023, 11(01): 39-44.
[15] 李磊, 冯秋婷, 由春媛, 金艳, 曹佳宁, 杨军. 先天性左心耳缺如合并阵发性心房颤动射频消融一例[J]. 中华心脏与心律电子杂志, 2022, 10(03): 180-182.
阅读次数
全文


摘要