切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (06) : 356 -360. doi: 10.3877/cma.j.issn.2095-2007.2023.06.007

综述

眼部建模的研究进展
丁一1, 杨嘉瑞2, 李学民2,()   
  1. 1. 100191 北京大学第三医院眼科2022级硕士研究生
    2. 100191 北京大学第三医院眼科
  • 收稿日期:2023-10-31 出版日期:2023-12-28
  • 通信作者: 李学民
  • 基金资助:
    2020年军队后勤科研项目(BZZ18J004)

Advances on the digital modeling of eye

Yi Ding1, Jiarui Yang2, Xuemin Li2,()   

  1. 1. Master′s degree 2022, Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
    2. Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
  • Received:2023-10-31 Published:2023-12-28
  • Corresponding author: Xuemin Li
引用本文:

丁一, 杨嘉瑞, 李学民. 眼部建模的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(06): 356-360.

Yi Ding, Jiarui Yang, Xuemin Li. Advances on the digital modeling of eye[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(06): 356-360.

人体及其器官数字化建模的仿真研究逐渐成为当今国际生物医学领域的前沿话题。眼作为人体中一个重要且精密的感觉器官,其数字模型及仿真研究具有极高的临床价值。眼部建模不仅可以摆脱活体试验的不便,还可以获取临床无法得到的精确数据信息,对眼部疾病的早发现早治疗具有重要的参考价值。基于此,本文中笔者就眼前节和眼后节眼部建模研究的发展状况进行综述,旨在为开发新的临床眼病诊断与治疗方式提供参考。

With the digital modeling and simulation research of the human body and its organs gradually becoming a cutting-edge topic in the international biomedical field. For an extremely precise and important sensory organ——eyes in the human body, its digital model have extremely high clinical value. Meanwhile, eye modeling can not only overcome the inconvenience of in vivo experiments, but also obtain more accurate data information that cannot be obtained clinically, which has important reference value for the early occurrence and treatment of eye diseases. Therefore, the development of eye modeling from the anterior and posterior segments were reviewed in this paper.

图1 眼部组织模型的基本搭建流程 图A示基于仪器采集眼部组织图像分析的简易过程,图B示基于组织结构特性的算法利用有限元分析法完成眼部模型的基本模拟过程
表1 眼部建模研究的文献汇总表
[1]
鞠颖. 中国人虚拟眼形态和功能的建模研究[D]. 西安:西安交通大学,2003.
[2]
Nejad TM, Foster C, Gongal D. Finite element modelling of cornea mechanics: a review[J]. Arq Bras Oftalmol, 2014, 77(1): 60-65.
[3]
Han Z, Li J, Singh M, et al. Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography[J]. Appl Phys Lett, 2015, 106(23): 233702.
[4]
Wang S, Chester SA. Multi-physics modeling and finite element formulation of corneal UV cross-linking[J]. Biomech Model Mechanobiol, 2021, 20(4): 1561-1578.
[5]
Bharathi RB, Poojary RG, Prabhu GK, et al. Finite element method for estimation of applanation force and to study the influence of intraocular pressure of eye on tonometry[J]. Int Ophthalmol, 2022, 42(7): 1997-2005.
[6]
Zhao G, Zhai H, Xiang H, et al. Biomechanical study of cornea response under orthokeratology lens therapy: A finite element analysis[J]. Int J Numer Method Biomed Eng, 2023, 39(10): e3691.
[7]
Ramasubramanian VS, Meenatchi SS, Thomas R, et al. Finite element analysis of cornea and lid wiper during blink, with and without contact lens[J]. J Ophthalmol, 2022, PMID: 35620413.
[8]
Su P, Lu DA, Deng S, et al. Three-dimensional biomechanical modeling and simulation of trephine cutting cornea for keratoplasty[J]. Acta Bioeng Biomech, 2018, 20(2): 23-33.
[9]
Baek JW, Park SJ. Finite element analysis of cornea deformation and curvature change during the keratoplasty suturing process[J]. Biomed Eng Lett, 2019, 9(2): 203-209.
[10]
Karimi A, Razaghi R, Sera T, et al. A combination of the finite element analysis and experimental indentation via the cornea[J]. J Mech Behav Biomed Mater, 2019, 90: 146-154.
[11]
Lovald ST, Rau A, Nissman S, et al. Finite element analysis and experimental evaluation of penetrating injury through the cornea[J]. J Mech Behav Biomed Mater, 2017, 66: 104-110.
[12]
Lee CM, Afshari NA. The global state of cataract blindness[J]. Curr Opin Ophthalmol, 2017, 28(1): 98-103.
[13]
Liu Z, Wang B, Xu X, et al. Finite element modeling and simulating of accommodating human crystalline lens[J]. Conf Proc IEEE Eng Med Biol Soc, 2005, PMID: 17282098.
[14]
Burd HJ, Regueiro RA. Finite element implementation of a multiscale model of the human lens capsule[J]. Biomech Model Mechanobiol, 2015, 14(6): 1363-1378.
[15]
Burd HJ, Wilde GS. Finite element modelling of radial lentotomy cuts to improve the accommodation performance of the human lens[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(4): 727-737.
[16]
Wang K, Hoshino M, Uesugi K, et al. Contributions of shape and stiffness to accommodative loss in the ageing human lens: a finite element model assessment[J]. J Opt Soc Am A Opt Image Sci Vis, 2019, 36(4): 116-122.
[17]
Cabeza-Gil I, Tahsini V, Kling S. Viscoelastic properties of porcine lenses using optical coherence elastography and inverse finite element analysis[J]. Exp Eye Res, 2023, 233: 109558-109567.
[18]
Han S, He C, Ma K, et al. A study for lens capsule tearing during capsulotomy by finite element simulation[J]. Comput Methods Programs Biomed, 2021, 203: 106025-106033.
[19]
Wang W, Qian X, Song H, et al. Fluid and structure coupling analysis of the interaction between aqueous humor and iris[J]. Biomed Eng Online, 2016, 15(S2): 133-150.
[20]
Heys JJ, Barocas VH, Taravella MJ. Modeling passive mechanical interaction between aqueous humor and iris[J]. J Biomech Eng, 2001, 123(6): 540-547.
[21]
Zhand J, Ren L, Mei X, et al. Microstructure visualization of conventional outflow pathway and finite element modeling analysis of trabecular meshwork[J]. Biomed Eng Online, 2016, 15(S2): 323-324.
[22]
Cai JC, Chen YL, Cao YH, et al. Numerical study of aqueous humor flow and iris deformation with pupillary block and the efficacy of laser peripheral iridotomy[J]. Clin Biomech, 2022, 92: 105579-105581.
[23]
Masland RH. The Neuronal organization of the retina[J]. Neuron, 2012, 76(2): 266-280.
[24]
李欣欣. 基于建模仿真研究视网膜神经节细胞对电刺激的时空响应特性[D]. 上海:上海交通大学,2020.
[25]
李敏. 眼底图像血管三维重建方法研究[D]. 天津:天津工业大学,2016.
[26]
刘婷婷. 医学眼底图像血管结构分析处理和三维重建[D]. 长春:吉林大学,2012.
[27]
Martinez-Perez ME, Espinosa-Rimero A. Three-dimensional reconstruction of blood vessels extracted from retinal fundus images[J]. Opt Express, 2012, 20(10): 11451-11465.
[28]
Zhand L, Qian X, Zhang K, et al. Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging[J]. Biomed Eng Online, 2013, PMID: 23577753.
[29]
Liu D, Wood NB, Witt N, et al. Computational analysis of oxygen transport in the retinal arterial network[J]. Curr Eye Res, 2009, 34(11): 945-956.
[30]
Han M, Kim YK, Park JR. Retinal blood vessel caliber estimation for optical coherence tomography angiography images based on 3D superellipsoid modeling[J]. Int J Image Graph, 2019, 19(2): 195011-195024.
[31]
Dziubek A, Guidoboni G, Harris A, et al. Effect of ocular shape and vascular geometry on retinal hemodynamics: a computational model[J]. Biomech Model Mechanobio, 2016, 15(4): 893-907.
[32]
Nadarasa J, Deck C, Meyer F, et al. Development of a finite-element eye model to investigate retinal hemorrhages in shaken baby syndrome[J]. Biomech Model Mechanobiol, 2018, 17(2): 517-530.
[33]
Shokrollahi Y, Dong P, Kaya M, et al. Rapid prediction of retina stress and strain patterns in soccer-related ocular injury: Integrating finite element analysis with machine learning approach[J]. Diagnostics, 2022, 12(7): 1530-1540.
[34]
Benavente-Pérez A, Hosking SL, Logan NS, et al. Ocular blood flow measurements in healthy human myopic eyes[J]. Graefes Arch Clin Exp Ophthalmol, 2010, 248(11): 1587-1594.
[35]
Yang YS, Koh JW. Choroidal blood flow change in eyes with high myopia[J]. Korean J Ophthalmol, 2015, 29(5): 309-314.
[36]
Brancato R, Trabucchi G. Fluorescein and indocyanine green angiography in vascular chorioretinal diseases[J]. Semin Ophthalmol, 1998, 13(4): 189-198.
[37]
AL-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al. Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes[J]. Invest Ophthalmol Vis Sci, 2017, 58(4): 2063-2069.
[38]
Wei X, Balne PK, Mmissner KE, et al. Assessment of flow dynamics in retinal and choroidal microcirculation[J]. Surv Ophthalmol, 2018, 63(5): 646-664.
[39]
Grudzińska E, Modrzejewska M. Modern diagnostic techniques for the assessment of ocular blood flow in myopia: current state of knowledge[J]. J Ophthalmol, 2018, PMID: 29607217.
[40]
Sekiryu T, Sugano Y, Ojima A, et al. Hybrid three-dimensional visualization of choroidal vasculature imaged by swept-source optical coherence tomography[J]. Transl Vis Sci Technol, 2019, 8(5): 31-42.
[41]
安森友. 基于GPU并行的LBM对图像的处理及流动模拟[D]. 青岛:中国石油大学,2018.
[1] 黄桂武, 李文昌, 邬培慧, 古明晖. 臼杯假体高度对臼杯-骨界面应力应变影响的有限元分析[J]. 中华关节外科杂志(电子版), 2020, 14(05): 578-583.
[2] 罗林聪, 彭鳒侨. 基于骨肌多体动力学前臂旋前旋后的有限元分析[J]. 中华关节外科杂志(电子版), 2020, 14(02): 173-178.
[3] 韩亮, 卢向东, 张晋峰. 两种常用内固定治疗股骨转子间骨折的有限元分析[J]. 中华关节外科杂志(电子版), 2019, 13(02): 230-236.
[4] 张银婷, 彭鳒侨. 基于MRI图像的计算机膝关节建模新思路[J]. 中华关节外科杂志(电子版), 2018, 12(06): 786-790.
[5] 吴晓琳, 张彬, 任力娟, 刘爽, 王东文. 肛提肌损伤的多学科研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2020, 14(02): 153-157.
[6] 李明震, 韩勇, 路庆森, 王甫. 肱骨近端骨折中内侧锁定钢板重建内侧柱的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(04): 321-329.
[7] 宗宇宁, 薛海鹏, 韩天宇, 张昊, 王帅, 马翔宇, 纪振钢, 周大鹏. 解剖状骨水泥占位器在治疗内侧柱缺失型肱骨近端骨折中的实用性的有限元分析[J]. 中华肩肘外科电子杂志, 2023, 11(03): 242-251.
[8] 王晨, 潘海乐. 肩袖三维有限元模型建立及力学分析[J]. 中华肩肘外科电子杂志, 2022, 10(03): 221-225.
[9] 李立, 李世伟, 汪方, 吴晓明, 李林, 李鸣, 吴腾飞, 谢红. 肱骨外展动作中肩袖生物力学的有限元分析[J]. 中华肩肘外科电子杂志, 2019, 07(04): 301-307.
[10] 包呼日查, 齐岩松, 陶立元, 王永祥, 魏宝刚, 李筱贺, 徐永胜. 肩袖损伤修补金属锚钉置入角度——有限元分析[J]. 中华肩肘外科电子杂志, 2019, 07(01): 56-62.
[11] 张乾龙, 王继荣, 宋晨辉, 刘修信, 任政, 刘宇哲, 阿里木江·玉素甫, 覃祺, 冉建. 两种髓内钉固定A3.1粗隆间骨折的有限元分析:增强型PFNA与InterTan[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 209-217.
[12] 朱燕宾, 程晓东, 王宇钏, 王忠正, 李泳龙, 李会杰, 王娟, 吕红芝, 陈伟, 张英泽. 股骨头部分置换术精准微创治疗中老年ARCO Ⅲ期股骨头缺血坏死的有限元分析[J]. 中华老年骨科与康复电子杂志, 2022, 08(05): 257-259.
[13] 杜兵, 马腾, 路遥, 张聪明, 许毅博, 黄强, 姬帅, 李明, 任程, 王谦, 张堃, 李忠. 新型股骨颈内固定系统与3枚空心钉加内侧钢板固定青壮年Pauwels Ⅲ型股骨颈骨折的有限元分析[J]. 中华老年骨科与康复电子杂志, 2021, 07(06): 333-338.
[14] 王晖, 杨朝旭, 孟凡涛. 胫骨托盘的不同结构设计对胫骨应力分布的影响[J]. 中华老年骨科与康复电子杂志, 2020, 06(06): 321-326.
[15] 李颖, 童梁成, 杨智伟, 蒋继亮, 汪剑龄, 杨俊生, 邢建新. 四维有限元骨承载力分析技术在判断长管骨愈合程度中的应用[J]. 中华老年骨科与康复电子杂志, 2020, 06(06): 312-320.
阅读次数
全文


摘要