切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2023, Vol. 13 ›› Issue (01) : 45 -49. doi: 10.3877/cma.j.issn.2095-2007.2023.01.009

综述

促红细胞生成素治疗间接性外伤性视神经病变的应用进展
张宇鹏, 邓爱军(), 孙艳   
  1. 261042 潍坊医学院附属医院眼科中心2021级硕士研究生
    261042 潍坊医学院附属医院眼科中心
  • 收稿日期:2022-01-08 出版日期:2023-02-28
  • 通信作者: 邓爱军
  • 基金资助:
    山东省自然科学基金项目(ZR2020MH173)

Application progress of erythropoietin in the treatment of indirect traumatic optic neuropathy

Yupeng Zhang, Aijun Deng(), Yan Sun   

  1. Master′s degree 2021, Eye center of Affiliated Hospital of Weifang Medical College, Weifang Medical College, Weifang 261402, China
    Eye Center of Affiliated Hospital of Weifang Medical College, Weifang Medical College, Weifang 261402, China
  • Received:2022-01-08 Published:2023-02-28
  • Corresponding author: Aijun Deng
引用本文:

张宇鹏, 邓爱军, 孙艳. 促红细胞生成素治疗间接性外伤性视神经病变的应用进展[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 45-49.

Yupeng Zhang, Aijun Deng, Yan Sun. Application progress of erythropoietin in the treatment of indirect traumatic optic neuropathy[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2023, 13(01): 45-49.

外伤性视神经病变是颅脑颌面部外伤后重要并发症之一,目前对于其治疗仍然是全球范围内的一大难题,尚未形成统一的诊疗指南。部分临床试验证实,促红细胞生成素在治疗眼科疾病方面具有独特的疗效,有助于视功能的恢复和改善,本文中笔者就促红细胞生成素治疗间接性外伤性视神经病变(TON)应用进展进行综述,旨在探讨EPO治疗间接性外伤性视神经病变(ITON)患者的临床应用,以期为EPO干预治疗ITON提供新的方向。

Traumatic optic neuropathy is one of the important complications after craniofacial trauma, and its treatment remains a major challenge worldwide, no unified diagnosis and treatment guidelines has been yet established. Some clinical trials have confirmed that erythropoietin has a unique therapeutic effect in the treatment of ophthalmic diseases, which contributes to the recovery and improvement of visual function. The application progress of erythropoietin in the treatment of indirect traumatic optic neuropathy (TON) was reviewed, which to explore the clinical application of EPO in the treatment of indirect traumatic optic neuropathy (ITON) patients, in order to provide new directions for EPO intervention in the treatment of ITON.

表1 促红细胞生成素治疗间接外伤性视神经病变的动物实验文献汇总
表2 促红细胞生成素治疗间接外伤性视神经病变的临床实验文献汇总
[1]
Jang SY. Traumatic Optic Neuropathy[J]. Korean J Neurotrauma, 2018, 14(1): 1-5.
[2]
Singman EL, Daphalapurkar N, White H, et al. Indirect traumatic optic neuropathy[J]. Mil Med Res, 2016, 11, 3: 2.
[3]
Kumaran AM, Sundar G, Chye LT. Traumatic optic neuropathy: a review[J]. Craniomaxillofac Trauma Reconstr, 2015, 8(1): 31-41.
[4]
邹伟,陈吉钢,张丹枫,等. The Progress of Treatment of Traumatic Optic Neuropathy[J]. 现代生物医学进展201616(16)):3176-3179.
[5]
Wladis EJ, Aakalu VK, Sobel RK, et al. Interventions for Indirect Traumatic Optic Neuropathy: A Report by the American Academy of Ophthalmology[J]. Ophthalmology, 2021, 128(6): 928-937.
[6]
Levin LA, Beck RW, Joseph MP, et al. The treatment of traumatic optic neuropathy: the International Optic Nerve Trauma Study[J]. Ophthalmology, 1999, 106(7): 1268-1277.
[7]
Edwards P, Arango M, Balica L, et al.CRASH trial collaborators. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months[J]. Lancet, 2005, 365(9475): 1957-1959.
[8]
Ben Simon GJ, Hovda DA, Harris NG, et al. Traumatic brain injury induced neuroprotection of retinal ganglion cells to optic nerve crush[J]. J Neurotrauma, 2006, 23(7): 1072-1082.
[9]
Huang TL, Chang CH, Lin KH, et al. Lack of protective effect of local administration of triamcinolone or systemic treatment with methylprednisolone against damages caused by optic nerve crush in rats[J]. Exp Eye Res, 2011, 92(2): 112-119.
[10]
Steinsapir KD, Goldberg RA, Sinha S, et al. Methylprednisolone exacerbates axonal loss following optic nerve trauma in rats[J]. Restor Neurol Neurosci, 2000, 17(4): 157-163.
[11]
Wei W, Zhao SF, Li Y, et al. The outcome of surgical and non-surgical treatments for traumatic optic neuropathy: a comparative study of 685 cases[J]. Ann Transl Med, 2022, 10(10): 542.
[12]
Mabuchi F, Aihara M, Mackey MR, et al. Optic nerve damage in experimental mouse ocular hypertension[J]. Invest Ophthalmol Vis Sci, 2003, 44(10): 4321-4330.
[13]
Yan W, Lin J, Hu W, et al. Combination analysis on the impact of the initial vision and surgical time for the prognosis of indirect traumatic optic neuropathy after endoscopic transnasal optic canal decompression[J]. Neurosurg Rev, 2021, 44(2): 945-952.
[14]
Xu R, Chen F, Zuo K, et al. Endoscopic optic nerve decompression for patients with traumatic optic neuropathy: is nerve sheath incision necessary?[J]. ORL J Otorhinolaryngol Relat Spec, 2014, 76(1): 44-49.
[15]
Yu B, Ma YJ, Tu YH, et al. Newly onset indirect traumatic optic neuropathy-surgical treatment first versus steroid treatment first[J]. Int J Ophthalmol, 2020, 13(1): 124-128.
[16]
Kimáková P, Solár P, Solárová Z, et al. Erythropoietin and Its Angiogenic Activity[J]. Int J Mol Sci, 2017, 18(7): 1519.
[17]
Ostrowski D, Heinrich R. Alternative Erythropoietin Receptors in the Nervous System[J]. J Clin Med, 2018, 7(2): 24.
[18]
Klopsch C, Skorska A, Ludwig M, et al. Intramyocardial angiogenetic stem cells and epicardial erythropoietin save the acute ischemic heart[J]. Dis Model Mech, 2018, 11(6): 033282.
[19]
Hemani S, Lane O, Agarwal S, et al. Systematic Review of Erythropoietin (EPO) for Neuroprotection in Human Studies[J]. Neurochem Res, 2021, 46(4): 732-739.
[20]
García-Ramírez M, Hernández C, Simó R. Expression of erythropoietin and its receptor in the human retina: a comparative study of diabetic and nondiabetic subjects[J]. Diabetes Care, 2008, 31(6): 1189-1194.
[21]
Dreixler JC, Hagevik S, Hemmert JW, et al. Involvement of erythropoietin in retinal ischemic preconditioning[J]. Anesthesiology, 2009, 110(4): 774-780.
[22]
Wang Y, Zhang H, Liu Y, et al. Erythropoietin (EPO) protects against high glucose-induced apoptosis in retinal ganglional cells[J]. Cell Biochem Biophys, 2015, 71(2): 749-755.
[23]
Shen J, Wu Y, Xu JY, et al. ERK- and Akt-dependent neuroprotection by erythropoietin (EPO) against glyoxal-AGEs via modulation of Bcl-xL, Bax, and BAD[J]. Invest Ophthalmol Vis Sci, 2010, 51(1): 35-46.
[24]
Kilic U, Kilic E, Soliz J, et al. Erythropoietin protects from axotomy-induced degeneration of retinal ganglion cells by activating ERK-1/-2[J]. FASEB J, 2005, 19(2): 249-251.
[25]
Chong ZZ, Kang JQ, Maiese K. Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways[J]. Br J Pharmacol, 2003, 138(6): 1107-1118.
[26]
Ma R, Hu J, Huang C, et al. JAK2/STAT5/Bcl-xL signalling is essential for erythropoietin-mediated protection against apoptosis induced in PC12 cells by the amyloid β-peptide Aβ25-35[J]. Br J Pharmacol, 2014, 171(13): 3234-3245.
[27]
Villa P, Bigini P, Mennini T, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis[J]. J Exp Med, 2003, 198(6): 971-975.
[28]
Bond WS, Rex TS. Evidence That Erythropoietin Modulates Neuroinflammation through Differential Action on Neurons, Astrocytes, and Microglia[J]. Front Immunol, 2014, 5:523.
[29]
Wang H, Fan J, Chen M, et al. rhEPO Enhances Cellular Anti-oxidant Capacity to Protect Long-Term Cultured Aging Primary Nerve Cells[J]. J Mol Neurosci, 2017, 62(3-4): 291-303.
[30]
Guix FX, Uribesalgo I, Coma M, Mu?oz FJ. The physiology and pathophysiology of nitric oxide in the brain[J]. Prog Neurobiol, 2005, 76(2): 126-52.
[31]
Kawakami M, Sekiguchi M, Sato K, et al. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia[J]. J Biol Chem, 2001, 276(42): 39469-39475.
[32]
Kretz A, Happold CJ, Marticke JK, et al. Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation[J].Mol Cell Neurosci, 2005, 29(4): 569-579.
[33]
Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system[J]. J Cell Biol, 2003, 162(2): 233-243.
[34]
Tan H, Zhong Y, Shen X, et al. Erythropoietin promotes axonal regeneration after optic nerve crush in vivo by inhibition of RhoA/ROCK signaling pathway[J]. Neuropharmacology, 2012, 63(6): 1182-1190.
[35]
King CE, Rodger J, Bartlett C, et al. Erythropoietin is both neuroprotective and neuroregenerative following optic nerve transection[J]. Exp Neurol, 2007, 205(1): 48-55.
[36]
Rex TS, Wong Y, Kodali K, et al. Neuroprotection of photoreceptors by direct delivery of erythropoietin to the retina of the retinal degeneration slow mouse[J]. Exp Eye Res, 2009, 89(5): 735-740.
[37]
Zhang JF, Wu YL, Xu JY, et al. Pharmacokinetic and toxicity study of intravitreal erythropoietin in rabbits[J]. Acta Pharmacol Sin, 2008, 29(11): 1383-90.
[38]
DeJulius CR, Bernardo-Colón A, Naguib S, et al. Microsphere antioxidant and sustained erythropoietin-R76E release functions cooperate to reduce traumatic optic neuropathy[J]. J Control Release, 2021, 329:762-773.
[39]
Kashkouli MB, Pakdel F, Sanjari MS, et al. Erythropoietin: a novel treatment for traumatic optic neuropathy-a pilot study[J]. Graefes Arch Clin Exp Ophthalmol, 2011, 249(5): 731-736.
[40]
Entezari M, Esmaeili M, Yaseri M. A pilot study of the effect of intravenous erythropoetin on improvement of visual function in patients with recent indirect traumatic optic neuropathy[J]. Graefes Arch Clin Exp Ophthalmol, 2014, 252(8): 1309-1313.
[41]
Kashkouli MB, Yousefi S, Nojomi M, et al. Traumatic optic neuropathy treatment trial (TONTT): open label, phase 3, multicenter, semi-experimental trial[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(1): 209-218.
[42]
Rashad MA, Abdel Latif AAM, Mostafa HA, et al. Visual-Evoked-Response-Supported Outcome of Intravitreal Erythropoietin in Management of Indirect Traumatic Optic Neuropathy[J]. J Ophthalmol, 2018: 2750632.
[43]
King CE, Rodger J, Bartlett C, et al. Erythropoietin is both neuroprotective and neuroregenerative following optic nerve transection[J]. Exp Neurol. 2007, 205(1): 48-55.
[44]
VSong BJ, Cai H, Tsai JC, et al. Intravitreal recombinant human erythropoietin: a safety study in rabbits[J]. Curr Eye Res. 2008, 33(9): 750-760.
[45]
Zhang J, Wu Y, Jin Y, et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes[J]. Invest Ophthalmol Vis Sci. 2008, 49(2): 732-742.
[46]
Modarres M, Falavarjani KG, Nazari H, et al. Intravitreal erythropoietin injection for the treatment of non-arteritic anterior ischaemic optic neuropathy[J]. Br J Ophthalmol. 2011, 95(7): 992-995.
[47]
Lagrèze WA, Feltgen N, Bach M, et al. Feasibility of intravitreal erythropoietin injections in humans[J]. Br J Ophthalmol. 2009, 93(12): 1667-1671.
[1] 阮素凤, 杨凡. 铁调素与早产儿缺铁性贫血的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2021, 17(02): 125-131.
[2] 袁静, 杨超, 陈娟. 间充质干细胞对新生儿缺氧缺血性脑损伤的神经保护作用[J]. 中华妇幼临床医学杂志(电子版), 2020, 16(04): 386-391.
[3] 卫洪波. 腹腔镜保留Denonvilliers 筋膜全直肠系膜切除术[J]. 中华普外科手术学杂志(电子版), 2022, 16(01): 18-18.
[4] 中华医学会器官移植学分会, 国家肾脏移植质控中心. 肾移植受者人类微小病毒B19感染临床诊疗技术规范(2022版)[J]. 中华移植杂志(电子版), 2022, 16(04): 193-200.
[5] 杜涛, 傅传刚. 3D腹腔镜下直肠癌根治术中植物神经保护的研究[J]. 中华结直肠疾病电子杂志, 2019, 08(04): 349-352.
[6] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[7] 王佳佳, 郭翼宁, 李学民. 重视视觉机制研究常用哺乳类实验动物的选择[J]. 中华眼科医学杂志(电子版), 2019, 09(04): 193-198.
[8] 李勇刚, 马峻, 雪亮, 苏少波, 张川, 曹艺耀, 赵子龙, 江荣才, 岳树源. 经筛蝶视神经管减压术治疗外伤性视神经病变的疗效及影响因素分析[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 151-155.
[9] 孟永生, 雍容, 吉晓丽, 赵钰龙, 赵鹏飞. 右美托咪定复合七氟醚对脑出血继发性损伤的预防效果及神经保护机制分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(01): 44-50.
[10] 冉启玉, 汤怀鹏, 孔蕾, 孙冰. 糖尿病视网膜病变中神经退行性变的发病机制及其潜在的治疗方法[J]. 中华诊断学电子杂志, 2023, 11(02): 120-124.
[11] 米芳, 刘敏, 张淑云, 汤汉清, 邱美蓉, 吕宝华, 黄晓媚, 卓龙彩. 胸腔镜肺段切除手术后多模镇痛的临床研究[J]. 中华胸部外科电子杂志, 2020, 07(01): 30-35.
[12] 朱李梅, 张经纬, 陈佳楠, 安林. 老年腰椎管狭窄症患者围术期应用人促红细胞生成素联合蔗糖铁的疗效分析[J]. 中华老年病研究电子杂志, 2023, 10(02): 24-27.
[13] 王红, 侯辰, 李锐, 唐鹏. 快速眼动睡眠行为障碍的治疗[J]. 中华老年病研究电子杂志, 2020, 07(01): 41-46.
[14] 吴嶛, 孙颖, 倪小宇, 倪贵华. 依达拉奉右莰醇注射用浓溶液治疗急性前循环缺血性脑卒中的短期临床疗效[J]. 中华脑血管病杂志(电子版), 2022, 16(04): 253-257.
[15] 王孟杰, 冯嵩, 马文渊, 陈超, 靳峰. 外泌体及其携带的microRNA与脑卒中的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(06): 418-421.
阅读次数
全文


摘要