切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 115 -119. doi: 10.3877/cma.j.issn.2095-2007.2022.02.010

综述

细胞因子与眼科疾病的研究进展
李坚1,(), 陶勇2, 郦舒伊1, 张小花1, 胡勇平1   
  1. 1. 310006 浙江大学医学院附属杭州市第一人民医院眼科
    2. 100020 首都医科大学附属北京朝阳医院眼科
  • 收稿日期:2022-03-01 出版日期:2022-04-28
  • 通信作者: 李坚
  • 基金资助:
    国家自然科学基金面上基金项目(82070948)

Research progress of cytokines and ophthalmic diseases

Jian Li1,(), Yong Tao2, Shuyi Li1, Xiaohua Zhang1, Yongping Hu1   

  1. 1. Department of Ophthalmology, Affiliated Hangzhou First People′s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
    2. Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2022-03-01 Published:2022-04-28
  • Corresponding author: Jian Li
引用本文:

李坚, 陶勇, 郦舒伊, 张小花, 胡勇平. 细胞因子与眼科疾病的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2022, 12(02): 115-119.

Jian Li, Yong Tao, Shuyi Li, Xiaohua Zhang, Yongping Hu. Research progress of cytokines and ophthalmic diseases[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(02): 115-119.

细胞因子有"细胞之间沟通语言"之称,它参与着机体器官组织的生理与病理过程。对细胞因子与眼部疾病的相关研究,不仅可以揭示其发病的分子机制,监测细胞因子的指标还可用于疾病诊断、预判疾病的转归、明确疾病干预的时机并有助于制定新型靶向治疗的策略。本文中笔者就细胞因子概念与研究的溯源及其在糖尿病性眼病、视网膜静脉阻塞、年龄相关性黄斑变性、自身免疫性葡萄膜炎、青光眼性视神经病变、增殖性玻璃体视网膜病变及早产儿视网膜病变等眼部疾病中的研究进展进行综述。

Cytokines, known as "communication language between cells", are involved in the physiological and pathological processes of tissues and body organs. Investigating cytokines and eye diseases can not only reveal the molecular mechanism of their pathogenesis, but also monitor the indicators of cytokines, which can also be used to make the diagnosis, predict the outcome of the disease, clarify the timing of disease intervention, and help to formulate new targeted treatment strategies. The concept and research origin of cytokines about eye diseases such as diabetes ophthalmopathy, retinal vein occlusion, age-related macular degeneration, autoimmune uveitis, glaucomatous optic neuropathy, proliferative vitreoretino-pathy and retinopathy of prematurity were reviewed in this study.

[1]
Oppenheim JJ. Cytokines: past, present, and future[J]. Int J Hematol, 2001, 74(1): 3-8.
[2]
Dumonde DC, Wolstencroft RA, Panayi GS, et al. Lymphokines: non-antibody mediators of cellular immunity generated by lymphocyte activation[J]. Nature, 1969, 224(5214): 38-42.
[3]
Cohen S, Bigazzi PE, Yoshida T. Commentary. Similarities of T cell function in cell-mediated immunity and antibody production[J]. Cell Immunol, 1974, 12(1): 150-159.
[4]
Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395(10229): 1033-1034.
[5]
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J]. Eye and vision, 2015, 2: 17.
[6]
Wang W, Lo ACY. Diabetic Retinopathy: Pathophysiology and Treatments[J]. International journal of molecular sciences, 2018, 19(6): 1816.
[7]
Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development[J]. Cell, 2019, 176(6): 1248-1264.
[8]
Murakami T, Frey T, Lin C, et al. Protein kinase cbeta phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo[J]. Diabetes, 2012, 61(6): 1573-1583.
[9]
Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen[J]. Science, 1989, 246(4935): 1306-1309.
[10]
Simo-Servat O, Hernandez C, Simo R. Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy[J]. Mediators of inflammation, 2012: 872978.
[11]
Dong N, Xu B, Wang B, et al. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy[J]. Mol Vis, 2013, 19: 1734-1746.
[12]
Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance[J]. Eur J Immunol, 2010, 40(7): 1830-1835.
[13]
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease[J]. Cold Spring Harb Perspect Biol, 2014, 6(10): a016295.
[14]
Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy[J]. Br J Ophthalmol, 2004, 88(10): 1343-1347.
[15]
Carmi Y, Dotan S, Rider P, et al. The role of IL-1beta in the early tumor cell-induced angiogenic response[J]. J Immunol, 2013, 190(7): 3500-3509.
[16]
Lee WJ, Kang MH, Seong M, et al. Comparison of aqueous concentrations of angiogenic and inflammatory cytokines in diabetic macular oedema and macular oedema due to branch retinal vein occlusion[J]. Br J Ophthalmol, 2012, 96(11): 1426-1430.
[17]
Hernandez C, Segura RM, Fonollosa A, et al. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy[J]. Diabet Med, 2005, 22(6): 719-722.
[18]
Aveleira CA, Lin CM, Abcouwer SF, et al. TNF-alpha signals through PKCzeta/NF-kappaB to alter the tight junction complex and increase retinal endothelial cell permeability[J]. Diabetes, 2010, 59(11): 2872-2882.
[19]
Taghavi Y, Hassanshahi G, Kounis NG, et al. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations[J]. J Cell Commun Signal, 2019, 13(4): 451-462.
[20]
Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB journal, 2004, 18(12): 1450-1452.
[21]
Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy[J]. Semin Immunopathol, 2008, 30(2): 65-84.
[22]
Antonetti DA, Barber AJ, Hollinger LA, et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1[J]. J Biol Chem, 1999, 274(33): 23463-23467.
[23]
Noma H, Funatsu H, Mimura T, et al. Vitreous levels of interleukin-6 and vascular endothelial growth factor in macular edema with central retinal vein occlusion[J]. Ophthalmology, 2009, 116(1): 87-93.
[24]
Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders[J]. N Engl J Med, 1994, 331(22): 1480-1487.
[25]
Noma H, Yasuda K, Mimura T, et al. Relationship between retinal blood flow and cytokines in central retinal vein occlusion[J]. BMC Ophthalmol, 2020, 20(1): 215.
[26]
Noma H, Mimura T, Yasuda K, et al. Role of soluble vascular endothelial growth factor receptor signaling and other factors or cytokines in central retinal vein occlusion with macular edema[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 1122-1128.
[27]
Yu H, Huang X, Ma Y, et al. Interleukin-8 regulates endothelial permeability by down-regulation of tight junction but not dependent on integrins induced focal adhesions[J]. Int J Biol Sci, 2013, 9(9): 966-979.
[28]
Lee YR, Liu MT, Lei HY, et al. MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells[J]. J Gen Virol, 2006, 87(12): 3623-3630.
[29]
Koss M, Pfister M, Rothweiler F, et al. Correlation from undiluted vitreous cytokines of untreated central retinal vein occlusion with spectral domain optical coherence tomography[J]. Open Ophthalmol J, 2013, 7: 11-17.
[30]
Elner SG, Elner VM, Pavilack MA, et al. Modulation and function of intercellular adhesion molecule-1 on human retinal pigment epithelial cells[J]. Lab Invest, 1992, 66(2): 200-211.
[31]
Miyamoto K, Khosrof S, Bursell SE, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition[J]. Proc Natl Acad Sci USA, 1999, 96(19): 10836-10841.
[32]
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040[J]. Lancet Glob Health, 2014, 2(2): 106-116.
[33]
Wang K, Li H, Sun R, et al. Emerging roles of transforming growth factor beta signaling in wet age-related macular degeneration[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(1): 1-8.
[34]
Joo JH, Kim H, Shin JH, et al. Aqueous humor cytokine levels through microarray analysis and a sub-analysis based on optical coherence tomography in wet age-related macular degeneration patients[J]. BMC Ophthalmol, 2021, 21(1): 399.
[35]
Celkova L, Doyle SL, Campbell M. NLRP3 Inflammasome and Pathobiology in AMD[J]. J Clin Med, 2015, 4(1): 172-192.
[36]
Al-Gayyar MM, Elsherbiny NM. Contribution of TNF-alpha to the development of retinal neurodegenerative disorders[J]. Eur Cytokine Netw, 2013, 24(1): 27-36.
[37]
Nagineni CN, Kommineni VK, Ganjbaksh N, et al. Inflammatory Cytokines Induce Expression of Chemokines by Human Retinal Cells: Role in Chemokine Receptor Mediated Age-related Macular Degeneration[J]. Aging Dis, 2015, 6(6): 444-455.
[38]
Paraoan L, Sharif U, Carlsson E, et al. Secretory proteostasis of the retinal pigmented epithelium: Impairment links to age-related macular degeneration[J]. Prog Retin Eye Res, 2020, 79: 100859.
[39]
von Essen MR, Sondergaard HB, Petersen ERS, et al. IL-6, IL-12, and IL-23 STAT-Pathway Genetic Risk and Responsiveness of Lymphocytes in Patients with Multiple Sclerosis[J]. Cells, 2019, 8(3): 285.
[40]
Karkhur S, Hasanreisoglu M, Vigil E, et al. Interleukin-6 inhibition in the management of non-infectious uveitis and beyond[J]. J Ophthalmic Inflamm Infect, 2019, 9(1): 17.
[41]
Guo K, Zhang X. Cytokines that Modulate the Differentiation of Th17 Cells in Autoimmune Uveitis[J]. J Immunol Res, 2021: 6693542.
[42]
Zhong Z, Su G, Kijlstra A, et al. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis[J]. Prog Retin Eye Res, 2021, 80: 100866.
[43]
Gupta S, Shyamsundar K, Agrawal M, et al. Current Knowledge of Biologics in Treatment of Noninfectious Uveitis[J]. J Ocul Pharmacol Ther, 2022, 38(3): 203-222.
[44]
Atienza-Mateo B, Calvo-Rio V, Beltran E, et al. Anti-interleukin 6 receptor tocilizumab in refractory uveitis associated with Behcet's disease: multicentre retrospective study[J]. Rheumatology (Oxford), 2018, 57(5): 856-864.
[45]
Fabiani C, Vitale A, Rigante D, et al. The Presence of Uveitis Is Associated with a Sustained Response to the Interleukin (IL)-1 Inhibitors Anakinra and Canakinumab in Behcet's Disease[J]. Ocul Immunol Inflamm, 2020, 28(2): 298-304.
[46]
Vernazza S, Oddone F, Tirendi S, et al. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention[J]. International journal of molecular sciences, 2021, 22(15): 7994.
[47]
Wang Y, Chen S, Liu Y, et al. Inflammatory cytokine profiles in eyes with primary angle-closure glaucoma[J]. Biosci Rep, 2018, 38(6): BSR20181411.
[48]
Zhang JL, Song XY, Chen YY, et al. Novel inflammatory cytokines (IL-36, 37, 38) in the aqueous humor from patients with chronic primary angle closure glaucoma[J]. Int Immunopharmacol, 2019, 71: 164-168.
[49]
Rasoulinejad SA, Karkhah A, Paniri A, et al. Contribution of inflammasome complex in inflammatory-related eye disorders and its implications for anti-inflammasome therapy[J]. Immunopharmacol Immunotoxicol, 2020, 42(5): 400-407.
[50]
Mudhar HS. A brief review of the histopathology of proliferative vitreoretinopathy[J]. Eye (Lond), 2020, 34(2): 246-250.
[51]
Wang ZY, Zhang Y, Chen J, et al. Artesunate inhibits the development of PVR by suppressing the TGF-beta/Smad signaling pathway[J]. Exp Eye Res, 2021, 213: 108859.
[52]
Lei H, Velez G, Hovland P, et al. Growth factors outside the PDGF family drive experimental PVR[J]. Invest Ophthalmol Vis Sci, 2009, 50(7): 3394-3403.
[53]
Chen X, Yang W, Deng X, et al. Interleukin-6 promotes proliferative vitreoretinopathy by inducing epithelial-mesenchymal transition via the JAK1/STAT3 signaling pathway[J]. Mol Vis, 2020, 26: 517-529.
[54]
Hartnett ME, Penn JS. Mechanisms and management of retinopathy of prematurity[J]. N Engl J Med, 2012, 367(26): 2515-2526.
[55]
Hartnett ME. Role of cytokines and treatment algorithms in retinopathy of prematurity[J]. Curr Opin Ophthalmol, 2017, 28(3): 282-288.
[56]
Aher SM, Ohlsson A. Early versus late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants[J]. Cochrane Database Syst Rev, 2020, 2(2): CD004865.
[1] 钱雅君, 虞竹溪, 徐颖, 董丹江, 顾勤. 危重型新型冠状病毒感染合并侵袭性肺曲霉病的临床特征和高危因素分析[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(01): 3-9.
[2] 娜菲沙·沙木西丁, 艾科热木·开赛尔江, 王雅琦, 李万富. 先天性腹壁缺损患儿的发病机制及创新治疗[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 468-475.
[3] 张燕, 杨跃青, 邱峥. IgG 联合血清细胞因子对肺结核并发慢性肺曲霉菌病的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 809-812.
[4] 蒋丽芳, 林冰. 桑菊清解汤联合左氧氟沙星治疗社区获得性肺炎的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 458-461.
[5] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[6] 徐嘉愉, 张复华, 牛国敏, 梁家宝, 潘焕玉, 麦秀蕖, 杨国雷, 徐嘉良, 黄佑勇. Th1/Th2细胞因子谱在恶性血液肿瘤患者化疗后中性粒细胞缺乏伴感染的应用价值[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 143-150.
[7] 乔树叶, 以敏, 李理, 潘思琼, 陈苗玉. 骨肉瘤诱导多能干细胞模型的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 30-36.
[8] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[9] 王浩年, 孙备, 陈华. 胆管内乳头状肿瘤的诊治策略[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 140-144.
[10] 杨智钧, 谷佳, 丁聿贤, 张正奎, 于如同. 脑胶质瘤患者血清炎性因子水平与病理分级及预后的相关性[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 238-242.
[11] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[12] 黄涔, 朱跃坤. 慢传输型便秘分子机制研究及临床应用现状[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 82-89.
[13] 李益军, 梁兴森, 方细霞, 肖文良, 李湘, 高彦平, 李嘉, 李玲. 温针灸治疗早中期寒湿痹阻型膝骨关节炎的疗效观察[J/OL]. 中华针灸电子杂志, 2024, 13(01): 7-12.
[14] 陈秋怡, 林熙, 刘珍银. 淋巴管畸形分子机制的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 374-379.
[15] 南朝涛, 陈建, 王书鸿, 李刚, 郝俊杰. 血清细胞因子预测急性脑梗死后肺炎的价值[J/OL]. 中华卫生应急电子杂志, 2024, 10(01): 16-20.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?