切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 115 -119. doi: 10.3877/cma.j.issn.2095-2007.2022.02.010

综述

细胞因子与眼科疾病的研究进展
李坚1,(), 陶勇2, 郦舒伊1, 张小花1, 胡勇平1   
  1. 1. 310006 浙江大学医学院附属杭州市第一人民医院眼科
    2. 100020 首都医科大学附属北京朝阳医院眼科
  • 收稿日期:2022-03-01 出版日期:2022-04-28
  • 通信作者: 李坚
  • 基金资助:
    国家自然科学基金面上基金项目(82070948)

Research progress of cytokines and ophthalmic diseases

Jian Li1,(), Yong Tao2, Shuyi Li1, Xiaohua Zhang1, Yongping Hu1   

  1. 1. Department of Ophthalmology, Affiliated Hangzhou First People′s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
    2. Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2022-03-01 Published:2022-04-28
  • Corresponding author: Jian Li
引用本文:

李坚, 陶勇, 郦舒伊, 张小花, 胡勇平. 细胞因子与眼科疾病的研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(02): 115-119.

Jian Li, Yong Tao, Shuyi Li, Xiaohua Zhang, Yongping Hu. Research progress of cytokines and ophthalmic diseases[J]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2022, 12(02): 115-119.

细胞因子有"细胞之间沟通语言"之称,它参与着机体器官组织的生理与病理过程。对细胞因子与眼部疾病的相关研究,不仅可以揭示其发病的分子机制,监测细胞因子的指标还可用于疾病诊断、预判疾病的转归、明确疾病干预的时机并有助于制定新型靶向治疗的策略。本文中笔者就细胞因子概念与研究的溯源及其在糖尿病性眼病、视网膜静脉阻塞、年龄相关性黄斑变性、自身免疫性葡萄膜炎、青光眼性视神经病变、增殖性玻璃体视网膜病变及早产儿视网膜病变等眼部疾病中的研究进展进行综述。

Cytokines, known as "communication language between cells", are involved in the physiological and pathological processes of tissues and body organs. Investigating cytokines and eye diseases can not only reveal the molecular mechanism of their pathogenesis, but also monitor the indicators of cytokines, which can also be used to make the diagnosis, predict the outcome of the disease, clarify the timing of disease intervention, and help to formulate new targeted treatment strategies. The concept and research origin of cytokines about eye diseases such as diabetes ophthalmopathy, retinal vein occlusion, age-related macular degeneration, autoimmune uveitis, glaucomatous optic neuropathy, proliferative vitreoretino-pathy and retinopathy of prematurity were reviewed in this study.

[1]
Oppenheim JJ. Cytokines: past, present, and future[J]. Int J Hematol, 2001, 74(1): 3-8.
[2]
Dumonde DC, Wolstencroft RA, Panayi GS, et al. Lymphokines: non-antibody mediators of cellular immunity generated by lymphocyte activation[J]. Nature, 1969, 224(5214): 38-42.
[3]
Cohen S, Bigazzi PE, Yoshida T. Commentary. Similarities of T cell function in cell-mediated immunity and antibody production[J]. Cell Immunol, 1974, 12(1): 150-159.
[4]
Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395(10229): 1033-1034.
[5]
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J]. Eye and vision, 2015, 2: 17.
[6]
Wang W, Lo ACY. Diabetic Retinopathy: Pathophysiology and Treatments[J]. International journal of molecular sciences, 2018, 19(6): 1816.
[7]
Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development[J]. Cell, 2019, 176(6): 1248-1264.
[8]
Murakami T, Frey T, Lin C, et al. Protein kinase cbeta phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo[J]. Diabetes, 2012, 61(6): 1573-1583.
[9]
Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen[J]. Science, 1989, 246(4935): 1306-1309.
[10]
Simo-Servat O, Hernandez C, Simo R. Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy[J]. Mediators of inflammation, 2012: 872978.
[11]
Dong N, Xu B, Wang B, et al. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy[J]. Mol Vis, 2013, 19: 1734-1746.
[12]
Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance[J]. Eur J Immunol, 2010, 40(7): 1830-1835.
[13]
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease[J]. Cold Spring Harb Perspect Biol, 2014, 6(10): a016295.
[14]
Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy[J]. Br J Ophthalmol, 2004, 88(10): 1343-1347.
[15]
Carmi Y, Dotan S, Rider P, et al. The role of IL-1beta in the early tumor cell-induced angiogenic response[J]. J Immunol, 2013, 190(7): 3500-3509.
[16]
Lee WJ, Kang MH, Seong M, et al. Comparison of aqueous concentrations of angiogenic and inflammatory cytokines in diabetic macular oedema and macular oedema due to branch retinal vein occlusion[J]. Br J Ophthalmol, 2012, 96(11): 1426-1430.
[17]
Hernandez C, Segura RM, Fonollosa A, et al. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy[J]. Diabet Med, 2005, 22(6): 719-722.
[18]
Aveleira CA, Lin CM, Abcouwer SF, et al. TNF-alpha signals through PKCzeta/NF-kappaB to alter the tight junction complex and increase retinal endothelial cell permeability[J]. Diabetes, 2010, 59(11): 2872-2882.
[19]
Taghavi Y, Hassanshahi G, Kounis NG, et al. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations[J]. J Cell Commun Signal, 2019, 13(4): 451-462.
[20]
Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB journal, 2004, 18(12): 1450-1452.
[21]
Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy[J]. Semin Immunopathol, 2008, 30(2): 65-84.
[22]
Antonetti DA, Barber AJ, Hollinger LA, et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1[J]. J Biol Chem, 1999, 274(33): 23463-23467.
[23]
Noma H, Funatsu H, Mimura T, et al. Vitreous levels of interleukin-6 and vascular endothelial growth factor in macular edema with central retinal vein occlusion[J]. Ophthalmology, 2009, 116(1): 87-93.
[24]
Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders[J]. N Engl J Med, 1994, 331(22): 1480-1487.
[25]
Noma H, Yasuda K, Mimura T, et al. Relationship between retinal blood flow and cytokines in central retinal vein occlusion[J]. BMC Ophthalmol, 2020, 20(1): 215.
[26]
Noma H, Mimura T, Yasuda K, et al. Role of soluble vascular endothelial growth factor receptor signaling and other factors or cytokines in central retinal vein occlusion with macular edema[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 1122-1128.
[27]
Yu H, Huang X, Ma Y, et al. Interleukin-8 regulates endothelial permeability by down-regulation of tight junction but not dependent on integrins induced focal adhesions[J]. Int J Biol Sci, 2013, 9(9): 966-979.
[28]
Lee YR, Liu MT, Lei HY, et al. MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells[J]. J Gen Virol, 2006, 87(12): 3623-3630.
[29]
Koss M, Pfister M, Rothweiler F, et al. Correlation from undiluted vitreous cytokines of untreated central retinal vein occlusion with spectral domain optical coherence tomography[J]. Open Ophthalmol J, 2013, 7: 11-17.
[30]
Elner SG, Elner VM, Pavilack MA, et al. Modulation and function of intercellular adhesion molecule-1 on human retinal pigment epithelial cells[J]. Lab Invest, 1992, 66(2): 200-211.
[31]
Miyamoto K, Khosrof S, Bursell SE, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition[J]. Proc Natl Acad Sci USA, 1999, 96(19): 10836-10841.
[32]
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040[J]. Lancet Glob Health, 2014, 2(2): 106-116.
[33]
Wang K, Li H, Sun R, et al. Emerging roles of transforming growth factor beta signaling in wet age-related macular degeneration[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(1): 1-8.
[34]
Joo JH, Kim H, Shin JH, et al. Aqueous humor cytokine levels through microarray analysis and a sub-analysis based on optical coherence tomography in wet age-related macular degeneration patients[J]. BMC Ophthalmol, 2021, 21(1): 399.
[35]
Celkova L, Doyle SL, Campbell M. NLRP3 Inflammasome and Pathobiology in AMD[J]. J Clin Med, 2015, 4(1): 172-192.
[36]
Al-Gayyar MM, Elsherbiny NM. Contribution of TNF-alpha to the development of retinal neurodegenerative disorders[J]. Eur Cytokine Netw, 2013, 24(1): 27-36.
[37]
Nagineni CN, Kommineni VK, Ganjbaksh N, et al. Inflammatory Cytokines Induce Expression of Chemokines by Human Retinal Cells: Role in Chemokine Receptor Mediated Age-related Macular Degeneration[J]. Aging Dis, 2015, 6(6): 444-455.
[38]
Paraoan L, Sharif U, Carlsson E, et al. Secretory proteostasis of the retinal pigmented epithelium: Impairment links to age-related macular degeneration[J]. Prog Retin Eye Res, 2020, 79: 100859.
[39]
von Essen MR, Sondergaard HB, Petersen ERS, et al. IL-6, IL-12, and IL-23 STAT-Pathway Genetic Risk and Responsiveness of Lymphocytes in Patients with Multiple Sclerosis[J]. Cells, 2019, 8(3): 285.
[40]
Karkhur S, Hasanreisoglu M, Vigil E, et al. Interleukin-6 inhibition in the management of non-infectious uveitis and beyond[J]. J Ophthalmic Inflamm Infect, 2019, 9(1): 17.
[41]
Guo K, Zhang X. Cytokines that Modulate the Differentiation of Th17 Cells in Autoimmune Uveitis[J]. J Immunol Res, 2021: 6693542.
[42]
Zhong Z, Su G, Kijlstra A, et al. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis[J]. Prog Retin Eye Res, 2021, 80: 100866.
[43]
Gupta S, Shyamsundar K, Agrawal M, et al. Current Knowledge of Biologics in Treatment of Noninfectious Uveitis[J]. J Ocul Pharmacol Ther, 2022, 38(3): 203-222.
[44]
Atienza-Mateo B, Calvo-Rio V, Beltran E, et al. Anti-interleukin 6 receptor tocilizumab in refractory uveitis associated with Behcet's disease: multicentre retrospective study[J]. Rheumatology (Oxford), 2018, 57(5): 856-864.
[45]
Fabiani C, Vitale A, Rigante D, et al. The Presence of Uveitis Is Associated with a Sustained Response to the Interleukin (IL)-1 Inhibitors Anakinra and Canakinumab in Behcet's Disease[J]. Ocul Immunol Inflamm, 2020, 28(2): 298-304.
[46]
Vernazza S, Oddone F, Tirendi S, et al. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention[J]. International journal of molecular sciences, 2021, 22(15): 7994.
[47]
Wang Y, Chen S, Liu Y, et al. Inflammatory cytokine profiles in eyes with primary angle-closure glaucoma[J]. Biosci Rep, 2018, 38(6): BSR20181411.
[48]
Zhang JL, Song XY, Chen YY, et al. Novel inflammatory cytokines (IL-36, 37, 38) in the aqueous humor from patients with chronic primary angle closure glaucoma[J]. Int Immunopharmacol, 2019, 71: 164-168.
[49]
Rasoulinejad SA, Karkhah A, Paniri A, et al. Contribution of inflammasome complex in inflammatory-related eye disorders and its implications for anti-inflammasome therapy[J]. Immunopharmacol Immunotoxicol, 2020, 42(5): 400-407.
[50]
Mudhar HS. A brief review of the histopathology of proliferative vitreoretinopathy[J]. Eye (Lond), 2020, 34(2): 246-250.
[51]
Wang ZY, Zhang Y, Chen J, et al. Artesunate inhibits the development of PVR by suppressing the TGF-beta/Smad signaling pathway[J]. Exp Eye Res, 2021, 213: 108859.
[52]
Lei H, Velez G, Hovland P, et al. Growth factors outside the PDGF family drive experimental PVR[J]. Invest Ophthalmol Vis Sci, 2009, 50(7): 3394-3403.
[53]
Chen X, Yang W, Deng X, et al. Interleukin-6 promotes proliferative vitreoretinopathy by inducing epithelial-mesenchymal transition via the JAK1/STAT3 signaling pathway[J]. Mol Vis, 2020, 26: 517-529.
[54]
Hartnett ME, Penn JS. Mechanisms and management of retinopathy of prematurity[J]. N Engl J Med, 2012, 367(26): 2515-2526.
[55]
Hartnett ME. Role of cytokines and treatment algorithms in retinopathy of prematurity[J]. Curr Opin Ophthalmol, 2017, 28(3): 282-288.
[56]
Aher SM, Ohlsson A. Early versus late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants[J]. Cochrane Database Syst Rev, 2020, 2(2): CD004865.
[1] 李文金, 薛庆云. 白细胞介素家族炎性细胞因子在骨关节炎中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 348-353.
[2] 王宇杰, 方雨婷, 张璇, 姚五平, 柳直. 髌股关节炎病因相关促炎因子研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(01): 71-76.
[3] 安丽欣, 张倩, 李昆, 刘耔序, 刘健, 石蕊. 两种微小RNA表达与痛风性关节炎免疫指标的相关性[J]. 中华关节外科杂志(电子版), 2023, 17(01): 29-34.
[4] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[5] 李敏, 杨凡. 肌细胞因子在儿童肥胖症患儿运动减脂中的作用研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(02): 125-131.
[6] 李芳, 李全, 曹胜军, 王凌峰. 生长因子和细胞因子在创面修复过程中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 174-179.
[7] 于欣睿, 曾辉. Janus激酶-信号转导与转录激活因子信号通路与脓毒症关系的复杂性[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(06): 366-369.
[8] 李永浩, 高雪菲, 郭田田, 张进, 张彩针, 刘静. 肥胖合并甲状腺癌相关机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 311-315.
[9] 陈双, 李莲, 彭余, 杨再林. T淋巴细胞及细胞因子在预测肺炎重症转化中的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 750-753.
[10] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[11] 刘晓梅, 张露, 刘旭, 梁蝶. 巨噬细胞迁移抑制因子靶向miR-127-3p对人肾癌细胞生物学行为的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 76-83.
[12] 金玺, 孙康, 郭建, 孔梅. 结直肠癌肝转移发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 163-166.
[13] 宋艳, 魏碧霞, 陶勇, 阿依古孜·克里木, 丁琳. 眼内液检测在明确葡萄膜炎病因中应用的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 82-87.
[14] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[15] 刘立业, 赵德芳. 非酒精性脂肪肝患者血清细胞因子信号转导抑制因子3、肝X受体α水平与CT影像学特征的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 211-215.
阅读次数
全文


摘要