[1] |
Oppenheim JJ. Cytokines: past, present, and future[J]. Int J Hematol, 2001, 74(1): 3-8.
|
[2] |
Dumonde DC, Wolstencroft RA, Panayi GS, et al. Lymphokines: non-antibody mediators of cellular immunity generated by lymphocyte activation[J]. Nature, 1969, 224(5214): 38-42.
|
[3] |
Cohen S, Bigazzi PE, Yoshida T. Commentary. Similarities of T cell function in cell-mediated immunity and antibody production[J]. Cell Immunol, 1974, 12(1): 150-159.
|
[4] |
Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395(10229): 1033-1034.
|
[5] |
Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss[J]. Eye and vision, 2015, 2: 17.
|
[6] |
Wang W, Lo ACY. Diabetic Retinopathy: Pathophysiology and Treatments[J]. International journal of molecular sciences, 2018, 19(6): 1816.
|
[7] |
Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development[J]. Cell, 2019, 176(6): 1248-1264.
|
[8] |
Murakami T, Frey T, Lin C, et al. Protein kinase cbeta phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo[J]. Diabetes, 2012, 61(6): 1573-1583.
|
[9] |
Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen[J]. Science, 1989, 246(4935): 1306-1309.
|
[10] |
Simo-Servat O, Hernandez C, Simo R. Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy[J]. Mediators of inflammation, 2012: 872978.
|
[11] |
Dong N, Xu B, Wang B, et al. Study of 27 aqueous humor cytokines in patients with type 2 diabetes with or without retinopathy[J]. Mol Vis, 2013, 19: 1734-1746.
|
[12] |
Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance[J]. Eur J Immunol, 2010, 40(7): 1830-1835.
|
[13] |
Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease[J]. Cold Spring Harb Perspect Biol, 2014, 6(10): a016295.
|
[14] |
Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy[J]. Br J Ophthalmol, 2004, 88(10): 1343-1347.
|
[15] |
Carmi Y, Dotan S, Rider P, et al. The role of IL-1beta in the early tumor cell-induced angiogenic response[J]. J Immunol, 2013, 190(7): 3500-3509.
|
[16] |
Lee WJ, Kang MH, Seong M, et al. Comparison of aqueous concentrations of angiogenic and inflammatory cytokines in diabetic macular oedema and macular oedema due to branch retinal vein occlusion[J]. Br J Ophthalmol, 2012, 96(11): 1426-1430.
|
[17] |
Hernandez C, Segura RM, Fonollosa A, et al. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy[J]. Diabet Med, 2005, 22(6): 719-722.
|
[18] |
Aveleira CA, Lin CM, Abcouwer SF, et al. TNF-alpha signals through PKCzeta/NF-kappaB to alter the tight junction complex and increase retinal endothelial cell permeability[J]. Diabetes, 2010, 59(11): 2872-2882.
|
[19] |
Taghavi Y, Hassanshahi G, Kounis NG, et al. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations[J]. J Cell Commun Signal, 2019, 13(4): 451-462.
|
[20] |
Joussen AM, Poulaki V, Le ML, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy[J]. FASEB journal, 2004, 18(12): 1450-1452.
|
[21] |
Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy[J]. Semin Immunopathol, 2008, 30(2): 65-84.
|
[22] |
Antonetti DA, Barber AJ, Hollinger LA, et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1[J]. J Biol Chem, 1999, 274(33): 23463-23467.
|
[23] |
Noma H, Funatsu H, Mimura T, et al. Vitreous levels of interleukin-6 and vascular endothelial growth factor in macular edema with central retinal vein occlusion[J]. Ophthalmology, 2009, 116(1): 87-93.
|
[24] |
Aiello LP, Avery RL, Arrigg PG, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders[J]. N Engl J Med, 1994, 331(22): 1480-1487.
|
[25] |
Noma H, Yasuda K, Mimura T, et al. Relationship between retinal blood flow and cytokines in central retinal vein occlusion[J]. BMC Ophthalmol, 2020, 20(1): 215.
|
[26] |
Noma H, Mimura T, Yasuda K, et al. Role of soluble vascular endothelial growth factor receptor signaling and other factors or cytokines in central retinal vein occlusion with macular edema[J]. Invest Ophthalmol Vis Sci, 2015, 56(2): 1122-1128.
|
[27] |
Yu H, Huang X, Ma Y, et al. Interleukin-8 regulates endothelial permeability by down-regulation of tight junction but not dependent on integrins induced focal adhesions[J]. Int J Biol Sci, 2013, 9(9): 966-979.
|
[28] |
Lee YR, Liu MT, Lei HY, et al. MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells[J]. J Gen Virol, 2006, 87(12): 3623-3630.
|
[29] |
Koss M, Pfister M, Rothweiler F, et al. Correlation from undiluted vitreous cytokines of untreated central retinal vein occlusion with spectral domain optical coherence tomography[J]. Open Ophthalmol J, 2013, 7: 11-17.
|
[30] |
Elner SG, Elner VM, Pavilack MA, et al. Modulation and function of intercellular adhesion molecule-1 on human retinal pigment epithelial cells[J]. Lab Invest, 1992, 66(2): 200-211.
|
[31] |
Miyamoto K, Khosrof S, Bursell SE, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition[J]. Proc Natl Acad Sci USA, 1999, 96(19): 10836-10841.
|
[32] |
Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040[J]. Lancet Glob Health, 2014, 2(2): 106-116.
|
[33] |
Wang K, Li H, Sun R, et al. Emerging roles of transforming growth factor beta signaling in wet age-related macular degeneration[J]. Acta Biochim Biophys Sin (Shanghai), 2019, 51(1): 1-8.
|
[34] |
Joo JH, Kim H, Shin JH, et al. Aqueous humor cytokine levels through microarray analysis and a sub-analysis based on optical coherence tomography in wet age-related macular degeneration patients[J]. BMC Ophthalmol, 2021, 21(1): 399.
|
[35] |
Celkova L, Doyle SL, Campbell M. NLRP3 Inflammasome and Pathobiology in AMD[J]. J Clin Med, 2015, 4(1): 172-192.
|
[36] |
Al-Gayyar MM, Elsherbiny NM. Contribution of TNF-alpha to the development of retinal neurodegenerative disorders[J]. Eur Cytokine Netw, 2013, 24(1): 27-36.
|
[37] |
Nagineni CN, Kommineni VK, Ganjbaksh N, et al. Inflammatory Cytokines Induce Expression of Chemokines by Human Retinal Cells: Role in Chemokine Receptor Mediated Age-related Macular Degeneration[J]. Aging Dis, 2015, 6(6): 444-455.
|
[38] |
Paraoan L, Sharif U, Carlsson E, et al. Secretory proteostasis of the retinal pigmented epithelium: Impairment links to age-related macular degeneration[J]. Prog Retin Eye Res, 2020, 79: 100859.
|
[39] |
von Essen MR, Sondergaard HB, Petersen ERS, et al. IL-6, IL-12, and IL-23 STAT-Pathway Genetic Risk and Responsiveness of Lymphocytes in Patients with Multiple Sclerosis[J]. Cells, 2019, 8(3): 285.
|
[40] |
Karkhur S, Hasanreisoglu M, Vigil E, et al. Interleukin-6 inhibition in the management of non-infectious uveitis and beyond[J]. J Ophthalmic Inflamm Infect, 2019, 9(1): 17.
|
[41] |
Guo K, Zhang X. Cytokines that Modulate the Differentiation of Th17 Cells in Autoimmune Uveitis[J]. J Immunol Res, 2021: 6693542.
|
[42] |
Zhong Z, Su G, Kijlstra A, et al. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis[J]. Prog Retin Eye Res, 2021, 80: 100866.
|
[43] |
Gupta S, Shyamsundar K, Agrawal M, et al. Current Knowledge of Biologics in Treatment of Noninfectious Uveitis[J]. J Ocul Pharmacol Ther, 2022, 38(3): 203-222.
|
[44] |
Atienza-Mateo B, Calvo-Rio V, Beltran E, et al. Anti-interleukin 6 receptor tocilizumab in refractory uveitis associated with Behcet's disease: multicentre retrospective study[J]. Rheumatology (Oxford), 2018, 57(5): 856-864.
|
[45] |
Fabiani C, Vitale A, Rigante D, et al. The Presence of Uveitis Is Associated with a Sustained Response to the Interleukin (IL)-1 Inhibitors Anakinra and Canakinumab in Behcet's Disease[J]. Ocul Immunol Inflamm, 2020, 28(2): 298-304.
|
[46] |
Vernazza S, Oddone F, Tirendi S, et al. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention[J]. International journal of molecular sciences, 2021, 22(15): 7994.
|
[47] |
Wang Y, Chen S, Liu Y, et al. Inflammatory cytokine profiles in eyes with primary angle-closure glaucoma[J]. Biosci Rep, 2018, 38(6): BSR20181411.
|
[48] |
Zhang JL, Song XY, Chen YY, et al. Novel inflammatory cytokines (IL-36, 37, 38) in the aqueous humor from patients with chronic primary angle closure glaucoma[J]. Int Immunopharmacol, 2019, 71: 164-168.
|
[49] |
Rasoulinejad SA, Karkhah A, Paniri A, et al. Contribution of inflammasome complex in inflammatory-related eye disorders and its implications for anti-inflammasome therapy[J]. Immunopharmacol Immunotoxicol, 2020, 42(5): 400-407.
|
[50] |
Mudhar HS. A brief review of the histopathology of proliferative vitreoretinopathy[J]. Eye (Lond), 2020, 34(2): 246-250.
|
[51] |
Wang ZY, Zhang Y, Chen J, et al. Artesunate inhibits the development of PVR by suppressing the TGF-beta/Smad signaling pathway[J]. Exp Eye Res, 2021, 213: 108859.
|
[52] |
Lei H, Velez G, Hovland P, et al. Growth factors outside the PDGF family drive experimental PVR[J]. Invest Ophthalmol Vis Sci, 2009, 50(7): 3394-3403.
|
[53] |
Chen X, Yang W, Deng X, et al. Interleukin-6 promotes proliferative vitreoretinopathy by inducing epithelial-mesenchymal transition via the JAK1/STAT3 signaling pathway[J]. Mol Vis, 2020, 26: 517-529.
|
[54] |
Hartnett ME, Penn JS. Mechanisms and management of retinopathy of prematurity[J]. N Engl J Med, 2012, 367(26): 2515-2526.
|
[55] |
Hartnett ME. Role of cytokines and treatment algorithms in retinopathy of prematurity[J]. Curr Opin Ophthalmol, 2017, 28(3): 282-288.
|
[56] |
Aher SM, Ohlsson A. Early versus late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants[J]. Cochrane Database Syst Rev, 2020, 2(2): CD004865.
|