切换至 "中华医学电子期刊资源库"

中华眼科医学杂志(电子版) ›› 2021, Vol. 11 ›› Issue (03) : 183 -187. doi: 10.3877/cma.j.issn.2095-2007.2021.03.010

综述

外泌体在眼科的研究进展
石燕红1, 陶勇1,()   
  1. 1. 100020 首都医科大学附属北京朝阳医院眼科
  • 收稿日期:2020-07-20 出版日期:2021-06-28
  • 通信作者: 陶勇
  • 基金资助:
    北京市教育委员会科研计划项目(KM202010025020); "北京朝阳医院1351人才培养计划"项目(CYXX-2017-21)

Research progress of exosomes in ophthalmology

Yanhong Shi1, Yong Tao1,()   

  1. 1. Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
  • Received:2020-07-20 Published:2021-06-28
  • Corresponding author: Yong Tao
引用本文:

石燕红, 陶勇. 外泌体在眼科的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2021, 11(03): 183-187.

Yanhong Shi, Yong Tao. Research progress of exosomes in ophthalmology[J/OL]. Chinese Journal of Ophthalmologic Medicine(Electronic Edition), 2021, 11(03): 183-187.

外泌体是一种由细胞分泌,具有膜结构的细胞外囊泡。外泌体中含有母体细胞的多种特异性结构成分,如信使核糖核酸、微小核糖核酸(miRNA)及一些蛋白质分子,并且参与了许多生理及病理过程,在细胞信号通讯过程中发挥重要作用。近年来,外泌体成为疾病研究的焦点和热点。本文中笔者就近年来外泌体在眼科研究中的进展进行综述。

Exosomes are extracellular vesicle-like bodies secreted by cells. Exosomes contain a variety of specific structural components of maternal cells, such as messenger ribonucleic acid (mRNA), micro ribonucleic acid (miRNA) and some protein molecules, which are involved in many physiological and pathological processes and play an important role in cell signal communication. In recent years, exosomes have become the focus and hotspot of research on diseases. The recent progress of exosomes in ophthalmology and its future research direction is reviewed.

[1]
Kramer-lbers EM. Ticket to ride: targeting proteins to exosomes for brain delivery [J]. Mol Ther, 2017, 25(6): 1264-1266.
[2]
Yan SS, Han B, Gao SY, et al. Exosome-encapsulated microRNAs as circulating biomarkers for colorectal cancer[J]. Oncotarget, 2017, 8(36): 6014-6020.
[3]
Gong M, Yu B, Wang JC, et al. Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis[J]. Oncotarget, 2017, 8 (28): 4520-4523.
[4]
Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation association of plasma membrane activities with released vesicles (exosomes)[J]. Biol Chem, 1987, 262(19): 9412-9420.
[5]
Ren RX, Sun H, Ma C, et al. Colon cancer cells secrete exosomes to promote self-proliferation by shortening mitosis duration and activation of STAT3 in a hypoxic environment [J]. Cell Biosci, 2019, 9: 62.
[6]
Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. CellBiol, 2013, 200(4): 373-383.
[7]
Mathivanan S, Ji H, Simpson RJ. Extracellular organelles important in intercellular communication [J]. Proteomics, 2010, 73(10): 1907-1920.
[8]
Mckelvey KJ, Powell KL, Ashton AW, et al. Mechanisms of uptake[J]. Circ Biomark, 2015, 4(7): 2019-2022.
[9]
Théry C, Zitvogel L, Amigorena S. Composition, biogenesis and function[J]. Nat Rev Immunol, 2002, 2(8): 569-579.
[10]
van der Vlist EJ, Arkesteijn GJ, van de Lest CH, et al. CD4+ T cell activation promotes the differential release of distinct populations of nanosized vesicles [J]. Extracell Vesicles, 2012, 1: 62.
[11]
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide trigger sbudding of exosome vesicles into multivesicular endosomes[J]. Science, 2008, 319(5867): 1244-1247.
[12]
Van Niel G, Porto-Carreiro I, Simoes S, et al. A common pathway for a specialized function[J]. Biochem, 2006, 140(1): 13-21.
[13]
Aghabozorgi AS, Ahangari N, Eftekhaari TE, et al. Circulating exosomal miRNAs in cardiovascular disease pathogenesis: new emerging hopes[J]. Cell Physiol, 2019, 234(12): 21796-21809.
[14]
Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell DevBiol, 201430(10): 255-289.
[15]
Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different step soft he exosome secretion pathway[J]. Nat Cell Biol, 2010, 12(1): 19-30.
[16]
Yu X, Harris SL, Levine AJ. The regulation of exosome secretion a novel function of the p53protein[J]. Cancer Res, 2006, 66(9): 479-483.
[17]
Mathieu M, Martin JL, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles forcell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1): 9-17.
[18]
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function[J]. Genomics Proteomics Bioinformatics, 2015, 13(1): 17-24.
[19]
Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediatedtransfer of mRNAs and microRNAs is a novel mechanism of genetic exchangebetweencells[J]. Nat Cell Biol, 2007, 9(6): 654-659.
[20]
Alipoor SD, Mortaz E, Garssen J, et al. exosomes and exosomal miRNA in respiratory diseases[J]. Mediators Inflamm, 2016: 562-570.
[21]
Lai RC,,Chen TS,,Lim SK. Mesenchymal stem cell exosome anovel stem cell-based therapy for cardiovascular disease[J]. Regen Med, 2011, 6(4): 481-492.
[22]
韩睿,李琳,王润清,等. 间充质干细胞来源外泌体对免疫功能调控的作用与应用前景[J] .中国组织工程研究201923(17):2762-2769.
[23]
Braun RK,,Chetty C,,Balasubramaniam V, et al. Intraperi-toneal injection of MSC-derived exosomes prevent experi-mental bron chopul monarydy splasia[J]. Biochem Bioph Res Commun2018, 503(4): 2653-2658.
[24]
Zheng Y, He R,,Wang P,et al. Exosomes from LPS-stimu-lated macrophages induce neuro protection and functional improvement after ischemic stroke by modulating micro glial polarization[J]. Biomater Sci, 2019, 7(5): 2037-2049.
[25]
Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232.
[26]
Cianciaruso C, Phelps EA, Pasquier M, et al. Primary human and rat β-cells release the intracellular autoantigens GAD65, IA-2, and proinsulin in exosomes together with cytokine-induced enhancers of imunity[J]. Diabetes, 2017, 66(2): 460-473.
[27]
Ashfaq UA,,Riaz M,,Yasmeen E, et al. Recentadvancesin nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment[J]. Crit Rev Ther Drug Carrier Syst2017, 34(4): 317-353.
[28]
Nouri YM,,Kim JH,,Yoon HK,et al. Update on transarterial chemoembolization with drug-eluting micro spheres for hepatocellular carcinoma[J]. Korean J Radiol, 2019, 20(1): 34-49.
[29]
Youn YS,,Bae YH. Perspectives on the past, present, and future of cancer nanomedicine[J]. Adv Drug Deliv Rev, 2018, 130: 3-11.
[30]
Mignani S, Rodrigues J,,Roy R,et al. Exploration of biomedical dendrimer space basedon in-vitro physicochemical parameters:key factor analysis[J]. Drug Discov Today, 2019, 24(5): 1176-1183.
[31]
Hached F,,Vinatier C,,LeVisage C,et al. Biomaterial-assisted cell therapy in osteoarthritis:From mesenchymal stem cells to cell encapsulation[J]. Best Pract Res Clin Rheumatol2017, 31(5): 730-745.
[32]
Liao W, Du Y, Zhang CH, et al. The next gener-ation of endogenous nanomaterials for advanced drug delivery and therapy[J]. Acta Biomaterialia, 2019, 86: 1-14.
[33]
Whiteside TL. Exosomes carrying immune inhibitory proteins and their role in cancer[J]. Clin Exp Immunol, 2017, 189(3): 259-267.
[34]
Nakase I, Noguchi K, Fujii I, et al. Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis[J]. Sci Rep, 20166: 34937.
[35]
Lu M, Xing H, Xun Z, et al. Functionalized extracellular vesicles as advanced therapeutic nanodelivery systems[J]. Eur J Pharm Sci, 2018, 121: 34-46.
[36]
Lin HP,,Zheng DJ,,Li YP,et al. Incorporation of VSV-G produces fusogenic plasma membrane vesicles capable of efficient transfer of bioactive macromolecules and mitochondria[J]. Biomed Microdevices, 2016, 18(3): 41.
[37]
Lee J,,Lee H,,Goh U,et al. Cellular Engineering with Membrane Fusogenic Liposomes to Produce Functionalized Extracellular Vesicles[J]. ACS Appl Mater Interfaces, 2016, 8(11): 6790-6795.
[38]
Huang SJ, Fu RH, Shyu WC, et al. Adipose-derived stem cells: Isolation, characterization, and differentiation potential[J]. Cell Transplant, 2013, 22: 701-709.
[39]
Rigotti G, Marchi A, Sbarbati A. Adipose-derived mesenchymal stem cells: Past, present, and future[J]. Aesthetic Plast Surg, 2009, 33: 271-273.
[40]
Marcus AJ, Coyne TM, Rauch J, et al. Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane[J]. Ophthalmol, 2011, 89: 741-748.
[41]
Cejkova J, Trosan P, Cejka C, et al. Suppression of alkali induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface[J]. Exp Eye Res, 2013, 116: 312-323.
[42]
Samaeekia R. Effect of Human Corneal Mesenchymal Stromal Cell-derived exosomes on Corneal Epithelial Wound Healing[J]. Invest Ophthalmol Vis Sci.2018, 59(12): 5194-5200.
[43]
Torricelli A, Santhanam A, Wu J, et al. The corneal fibrosis response to epithelial-stromal injury[J]. Exp Eye Res, 142: 110-118.
[44]
Määttä M, Väisänen T, Väisänen MR, et al. Altered expression of type XIII collagen in keratoconus and scarred human cornea: Increased expression in scarred cornea is associated with myofibroblast transformation[J]. Cornea, 2006, 25: 448-453.
[45]
Kyu YH. Potential role of corneal epithelial cell-derived exosomes in corneal wound healing and neovascularization[J]. Sci Rep, 2017, 7: 405-410.
[46]
Jiang TS, Cai L, Ji WY, et al. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats[J]. Mol Vis, 2010, 16: 1304.
[47]
Reinshagen H, Auw-Haedrich C, Sorg RV, et al. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits[J]. Acta, 2013, 16: 1304.
[48]
Holan V, Javorkova E. Mesenchymal stem cells, nanofiber scaffolds and ocular surface reconstruction[J]. Stem Cell Rev Rep, 2013, 9: 609-619.
[49]
Shen T. Effects of Adipose-derived Mesenchymal Stem Cell exosomes on Corneal Stromal Fibroblast Viability and Extracellular Matrix Synthesis[J]. Chin Med, 2018, 131(6): 704-712.
[50]
Mathew B, Ravindran S, Phelps EA, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion[J]. Biomaterials, 2019, 197: 146-160.
[51]
Agouni A, Ducluzeau PH, Benameur T, et al. Microparticles from patients with metabolic syndrome induce vascular hypo-reactivity via Fas/Fas-ligand pathway in mice[J]. Mol Vis, 2011, 6(11): 227-232.
[52]
Cianciaruso C, Phelps EA, Pasquier M, et al. Primary human and rat β-cells release the intracellular autoantigens GAD65, IA-2, and proinsulin in exosomes together with cytokine-induced enhancers of immunity[J]. Diabetes, 2017, 66(2): 460-473.
[53]
Santovito D, De Nardis V, Marcantonio P, et al. Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control[J]. Clin Endocrinol Metab, 2014, 99(9): 1681-1685.
[54]
Sáez T, Toledo F, Sobrevia L. Extracellular vesicles and insulin resistance: A potential interaction in vascular dysfunction[J]. Curr Vasc Pharmacol, 2019, 17(5): 491-497.
[55]
Zhang X, Liu J, Yu B, et al. Effects of mesenchymal stem cells and their exosomes on the healing of large and refractory macular holes[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(11): 2041-2052.
[56]
Pan D, Chang X, Xu M. UMSC-derived exosomes promote retinal ganglion cells survival in a rat model of optic nerve crush[J]. J Chem Neuroanat, 2019, 96: 134-139.
[57]
Bai L, Shao H, Wang H. Effects of mesenchymal stem cell-derived exosomes on experimental autoimmune uveitis[J]. Sci Rep, 2017, 7(1): 4323.
[58]
Ragusa M, Barbagallo C. A miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients[J]. Pathological and diagnostic implicationsCancer Biol Ther, 2015, 16(9): 1387-1396.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 费扬, 赵晗希, 孙丽琴, 楼琴华, 胡骏程. 银杏叶提取物对糖尿病肾病患者的疗效及其对尿液外泌体miR-342-3p的干预研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(03): 219-224.
[3] 林琳, 田思萌, 于永华, 徐飞飞, 黄明莉. 干细胞及其外泌体治疗宫腔黏连的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 271-275.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[6] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[7] 朱佑君, 付万垒, 毛杨, 李德峰. 细胞外基质相关标志物与成纤维细胞在肺动脉高压发展中的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 356-362.
[8] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[9] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[10] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[11] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[12] 张蔚林, 王哲学, 白峻阁, 黄忠诚, 肖志刚. 利用TCGA数据库构建基于miRNA的结直肠癌列线图预后模型[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(05): 381-388.
[13] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[14] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[15] 辛强, 朱文豪, 何川, 李文臣, 陈勃, 王海峰. 神经胶质细胞来源的外泌体miRNAs对创伤性颅脑损伤后神经炎症的影响[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(03): 169-173.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?